\(\boldsymbol{L_1-\beta L_q}\) 最小化的信号和图像恢复

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Limei Huo, Wengu Chen, Huanmin Ge, Michael K. Ng
{"title":"\\(\\boldsymbol{L_1-\\beta L_q}\\) 最小化的信号和图像恢复","authors":"Limei Huo, Wengu Chen, Huanmin Ge, Michael K. Ng","doi":"10.1137/22m1525363","DOIUrl":null,"url":null,"abstract":"The nonconvex optimization method has attracted increasing attention due to its excellent ability of promoting sparsity in signal processing, image restoration, and machine learning. In this paper, we consider a new minimization method and its applications in signal recovery and image reconstruction because minimization provides an effective way to solve the -ratio sparsity minimization model. Our main contributions are to establish a convex hull decomposition for and investigate RIP-based conditions for stable signal recovery and image reconstruction by minimization. For one-dimensional signal recovery, our derived RIP condition extends existing results. For two-dimensional image recovery under minimization of image gradients, we provide the error estimate of the resulting optimal solutions in terms of sparsity and noise level, which is missing in the literature. Numerical results of the limited angle problem in computed tomography imaging and image deblurring are presented to validate the efficiency and superiority of the proposed minimization method among the state-of-art image recovery methods.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\\(\\\\boldsymbol{L_1-\\\\beta L_q}\\\\) Minimization for Signal and Image Recovery\",\"authors\":\"Limei Huo, Wengu Chen, Huanmin Ge, Michael K. Ng\",\"doi\":\"10.1137/22m1525363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonconvex optimization method has attracted increasing attention due to its excellent ability of promoting sparsity in signal processing, image restoration, and machine learning. In this paper, we consider a new minimization method and its applications in signal recovery and image reconstruction because minimization provides an effective way to solve the -ratio sparsity minimization model. Our main contributions are to establish a convex hull decomposition for and investigate RIP-based conditions for stable signal recovery and image reconstruction by minimization. For one-dimensional signal recovery, our derived RIP condition extends existing results. For two-dimensional image recovery under minimization of image gradients, we provide the error estimate of the resulting optimal solutions in terms of sparsity and noise level, which is missing in the literature. Numerical results of the limited angle problem in computed tomography imaging and image deblurring are presented to validate the efficiency and superiority of the proposed minimization method among the state-of-art image recovery methods.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1525363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1525363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

非凸优化方法因其在信号处理、图像恢复和机器学习等方面具有提高稀疏性的优异能力而受到越来越多的关注。本文考虑了一种新的最小化方法及其在信号恢复和图像重建中的应用,因为最小化提供了一种有效的方法来解决-比稀疏性最小化模型。我们的主要贡献是建立凸壳分解,并研究基于rip的条件,通过最小化实现稳定的信号恢复和图像重建。对于一维信号恢复,我们推导的RIP条件扩展了已有的结果。对于最小化图像梯度下的二维图像恢复,我们提供了从稀疏度和噪声水平方面得出的最优解的误差估计,这在文献中是缺失的。给出了计算机断层成像和图像去模糊中的极限角度问题的数值结果,验证了该方法在现有图像恢复方法中的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\(\boldsymbol{L_1-\beta L_q}\) Minimization for Signal and Image Recovery
The nonconvex optimization method has attracted increasing attention due to its excellent ability of promoting sparsity in signal processing, image restoration, and machine learning. In this paper, we consider a new minimization method and its applications in signal recovery and image reconstruction because minimization provides an effective way to solve the -ratio sparsity minimization model. Our main contributions are to establish a convex hull decomposition for and investigate RIP-based conditions for stable signal recovery and image reconstruction by minimization. For one-dimensional signal recovery, our derived RIP condition extends existing results. For two-dimensional image recovery under minimization of image gradients, we provide the error estimate of the resulting optimal solutions in terms of sparsity and noise level, which is missing in the literature. Numerical results of the limited angle problem in computed tomography imaging and image deblurring are presented to validate the efficiency and superiority of the proposed minimization method among the state-of-art image recovery methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信