B. Rajith Reddy, B. Ekambaram, P. Jaya Laxmi, CH. Harikrishna, T.K. Bhattacharya, G. Sushma
{"title":"利用三种不同的Web工具平台设计CRISPR/Cas基因组编辑单导RNA (sgRNA)","authors":"B. Rajith Reddy, B. Ekambaram, P. Jaya Laxmi, CH. Harikrishna, T.K. Bhattacharya, G. Sushma","doi":"10.18805/ijar.b-5200","DOIUrl":null,"url":null,"abstract":"Background: Genome editing is a group of technologies that has the ability to change an organism’s DNA. These technologies allow genetic material to be added, removed, or altered at particular locations in the genome. Several approaches to genome editing have been developed. A well-known one is called CRISPR/Cas9, which is short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9. Editing through CRISPR focuses mainly on the Protospacer-adjacent motif (PAM), a crucial region to identify the sgRNAs to target the desired gene or region of DNA. So designing precise single-guide RNAs (sgRNAs) to minimize off-target effects is critical for the success of gene editing without undesired results. Methods: Hence, in this article, three different online tools are used to design sgRNA to target the prolactin (PRL) gene to knock out. The Gallus gallus Prolactin (PRL) gene sequence is retrieved from NCBI and used for further downstream application. However, all three web tools may vary in design specifications and parameter choices, visualization, downstream analysis functionality, etc. Result: While keeping a straightforward and interactive interface and running with default parameters, all web tools also accept a variety of advanced choices for more specialized searches. This maximizes user flexibility. Three tools produced several sgRNAs that satisfied various criteria for precise gene editing to boost the efficacy of the target prolactin gene. These online tools use a robust approach to identify off-target locations and the results are displayed in an interactive table and within the gene architecture.","PeriodicalId":13410,"journal":{"name":"Indian Journal of Animal Research","volume":"6 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas Genome Editing Single Guide RNA (sgRNA) Design using Three Different Web Tool Platforms\",\"authors\":\"B. Rajith Reddy, B. Ekambaram, P. Jaya Laxmi, CH. Harikrishna, T.K. Bhattacharya, G. Sushma\",\"doi\":\"10.18805/ijar.b-5200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Genome editing is a group of technologies that has the ability to change an organism’s DNA. These technologies allow genetic material to be added, removed, or altered at particular locations in the genome. Several approaches to genome editing have been developed. A well-known one is called CRISPR/Cas9, which is short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9. Editing through CRISPR focuses mainly on the Protospacer-adjacent motif (PAM), a crucial region to identify the sgRNAs to target the desired gene or region of DNA. So designing precise single-guide RNAs (sgRNAs) to minimize off-target effects is critical for the success of gene editing without undesired results. Methods: Hence, in this article, three different online tools are used to design sgRNA to target the prolactin (PRL) gene to knock out. The Gallus gallus Prolactin (PRL) gene sequence is retrieved from NCBI and used for further downstream application. However, all three web tools may vary in design specifications and parameter choices, visualization, downstream analysis functionality, etc. Result: While keeping a straightforward and interactive interface and running with default parameters, all web tools also accept a variety of advanced choices for more specialized searches. This maximizes user flexibility. Three tools produced several sgRNAs that satisfied various criteria for precise gene editing to boost the efficacy of the target prolactin gene. These online tools use a robust approach to identify off-target locations and the results are displayed in an interactive table and within the gene architecture.\",\"PeriodicalId\":13410,\"journal\":{\"name\":\"Indian Journal of Animal Research\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Animal Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18805/ijar.b-5200\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Animal Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18805/ijar.b-5200","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
CRISPR/Cas Genome Editing Single Guide RNA (sgRNA) Design using Three Different Web Tool Platforms
Background: Genome editing is a group of technologies that has the ability to change an organism’s DNA. These technologies allow genetic material to be added, removed, or altered at particular locations in the genome. Several approaches to genome editing have been developed. A well-known one is called CRISPR/Cas9, which is short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9. Editing through CRISPR focuses mainly on the Protospacer-adjacent motif (PAM), a crucial region to identify the sgRNAs to target the desired gene or region of DNA. So designing precise single-guide RNAs (sgRNAs) to minimize off-target effects is critical for the success of gene editing without undesired results. Methods: Hence, in this article, three different online tools are used to design sgRNA to target the prolactin (PRL) gene to knock out. The Gallus gallus Prolactin (PRL) gene sequence is retrieved from NCBI and used for further downstream application. However, all three web tools may vary in design specifications and parameter choices, visualization, downstream analysis functionality, etc. Result: While keeping a straightforward and interactive interface and running with default parameters, all web tools also accept a variety of advanced choices for more specialized searches. This maximizes user flexibility. Three tools produced several sgRNAs that satisfied various criteria for precise gene editing to boost the efficacy of the target prolactin gene. These online tools use a robust approach to identify off-target locations and the results are displayed in an interactive table and within the gene architecture.
期刊介绍:
The IJAR, the flagship print journal of ARCC, it is a monthly journal published without any break since 1966. The overall aim of the journal is to promote the professional development of its readers, researchers and scientists around the world. Indian Journal of Animal Research is peer-reviewed journal and has gained recognition for its high standard in the academic world. It anatomy, nutrition, production, management, veterinary, fisheries, zoology etc. The objective of the journal is to provide a forum to the scientific community to publish their research findings and also to open new vistas for further research. The journal is being covered under international indexing and abstracting services.