基于硅酸盐粉的可回收钾盐脱盐吸附剂:应用、再生与利用

IF 2.5 Q3 CHEMISTRY, PHYSICAL
Akmaral B. Rakhym, Zarina Ye. Baranchiyeva, Aruzhan K. Kenessova, Bagashar B. Zhaksybai, Diana N. Dauzhanova, Yitzhak Mastai, Gulziya A. Seilkhanova
{"title":"基于硅酸盐粉的可回收钾盐脱盐吸附剂:应用、再生与利用","authors":"Akmaral B. Rakhym, Zarina Ye. Baranchiyeva, Aruzhan K. Kenessova, Bagashar B. Zhaksybai, Diana N. Dauzhanova, Yitzhak Mastai, Gulziya A. Seilkhanova","doi":"10.3390/colloids7040061","DOIUrl":null,"url":null,"abstract":"Silicate mineral powders (SMP) from weathered granite soil from Kazakhstan are proposed for the desalination of potash brines containing sodium, potassium and chloride ions. Batch adsorption experiments using acid-treated silicate (AS) achieved a Na+/K+/Cl− recovery of ~13/28/6 mg/g. An isothermal study best fitted the Freundlich and Dubinin–Radushkevich models for Na+ and K+/Cl−. The kinetic data were best modeled by pseudo-second-order kinetics for Na+/K+ and pseudo-first-order for Cl−. Thermodynamic calculations showed spontaneity under natural conditions. For Na+/K+, physisorption is accompanied by ion exchange. To study the possibility of sorbent reuse, several cycles of K+/Na+ adsorption–desorption were carried out under optimal conditions. AS selectively adsorbed potassium ions, maintaining a high effectiveness during five cycles providing K-form silicate fertilizers. Leachates of spent AS contain high concentrations of K/Na/Ca/Mg and other microelements essential for plants. Thus, SMP resolve two issues: the desalination of brine and the provision of fertilizer.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recyclable Adsorbents for Potash Brine Desalination Based on Silicate Powder: Application, Regeneration and Utilization\",\"authors\":\"Akmaral B. Rakhym, Zarina Ye. Baranchiyeva, Aruzhan K. Kenessova, Bagashar B. Zhaksybai, Diana N. Dauzhanova, Yitzhak Mastai, Gulziya A. Seilkhanova\",\"doi\":\"10.3390/colloids7040061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicate mineral powders (SMP) from weathered granite soil from Kazakhstan are proposed for the desalination of potash brines containing sodium, potassium and chloride ions. Batch adsorption experiments using acid-treated silicate (AS) achieved a Na+/K+/Cl− recovery of ~13/28/6 mg/g. An isothermal study best fitted the Freundlich and Dubinin–Radushkevich models for Na+ and K+/Cl−. The kinetic data were best modeled by pseudo-second-order kinetics for Na+/K+ and pseudo-first-order for Cl−. Thermodynamic calculations showed spontaneity under natural conditions. For Na+/K+, physisorption is accompanied by ion exchange. To study the possibility of sorbent reuse, several cycles of K+/Na+ adsorption–desorption were carried out under optimal conditions. AS selectively adsorbed potassium ions, maintaining a high effectiveness during five cycles providing K-form silicate fertilizers. Leachates of spent AS contain high concentrations of K/Na/Ca/Mg and other microelements essential for plants. Thus, SMP resolve two issues: the desalination of brine and the provision of fertilizer.\",\"PeriodicalId\":10433,\"journal\":{\"name\":\"Colloids and Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colloids7040061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colloids7040061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

从哈萨克斯坦风化花岗岩土中提取的硅酸盐矿物粉(SMP)被提议用于含钠、钾和氯离子的钾盐盐水的脱盐。采用酸处理的硅酸(AS)进行间歇吸附实验,Na+/K+/Cl−的回收率为~13/28/6 mg/g。等温研究最适合于Na+和K+/Cl−的Freundlich和Dubinin-Radushkevich模型。Na+/K+的准二级动力学和Cl−的准一级动力学最好地模拟了动力学数据。热力学计算显示了自然条件下的自发性。对于Na+/K+,物理吸附伴随着离子交换。为了研究吸附剂重复使用的可能性,在最佳条件下进行了多次K+/Na+吸附-解吸循环。AS选择性吸附钾离子,在5个循环中保持高效,提供钾型硅酸盐肥料。废AS渗滤液中含有高浓度的K/Na/Ca/Mg等植物必需微量元素。因此,SMP解决了两个问题:盐水的淡化和肥料的提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recyclable Adsorbents for Potash Brine Desalination Based on Silicate Powder: Application, Regeneration and Utilization
Silicate mineral powders (SMP) from weathered granite soil from Kazakhstan are proposed for the desalination of potash brines containing sodium, potassium and chloride ions. Batch adsorption experiments using acid-treated silicate (AS) achieved a Na+/K+/Cl− recovery of ~13/28/6 mg/g. An isothermal study best fitted the Freundlich and Dubinin–Radushkevich models for Na+ and K+/Cl−. The kinetic data were best modeled by pseudo-second-order kinetics for Na+/K+ and pseudo-first-order for Cl−. Thermodynamic calculations showed spontaneity under natural conditions. For Na+/K+, physisorption is accompanied by ion exchange. To study the possibility of sorbent reuse, several cycles of K+/Na+ adsorption–desorption were carried out under optimal conditions. AS selectively adsorbed potassium ions, maintaining a high effectiveness during five cycles providing K-form silicate fertilizers. Leachates of spent AS contain high concentrations of K/Na/Ca/Mg and other microelements essential for plants. Thus, SMP resolve two issues: the desalination of brine and the provision of fertilizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Interfaces
Colloids and Interfaces CHEMISTRY, PHYSICAL-
CiteScore
3.90
自引率
4.20%
发文量
64
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信