{"title":"岩石物理学指导机器学习进行剪切声波测井预测","authors":"Luanxiao Zhao, Jingyu Liu, Minghui Xu, Zhenyu Zhu, Yuanyuan Chen, Jianhua Geng","doi":"10.1190/geo2023-0152.1","DOIUrl":null,"url":null,"abstract":"Shear wave velocity (Vs) is a vital parameter for various petrophysical, geophysical, and geomechanical applications in subsurface characterization. However, obtaining shear sonic log is often challenging since it often costs extra budget and time to acquire. Conventional methods for predicting Vs often rely on empirical relationships and rock physics models. However, these models often fall short in accuracy due to their inability to account for the complex nonlinear factors affecting the relationship between Vs and other parameters. We propose a physics-guided machine learning approach to predict shear sonic log using the various physical parameters (e.g. natural gamma ray, P-wave velocity, density, resistivity) that can be routinely obtained from standard logging suites. Three types of rock physical constraints including the mudrock line, empirical P- and S- wave velocity relationship and multi-parameter regression from the logging data, are combined with three physical guidance strategies including constructing physics-guided pseudo labels, physics-guided loss function and transfer learning, to blind test four wells based on one training well in a clastic reservoir. Compared to pure supervised ML, all the model that incorporates physical constraints significantly improves prediction accuracy and generalization performance, demonstrating the importance of incorporating first-order physical laws into data-driven network training. The multi-parameter regression relationship combined with the strategy of constructing physics-guided pseudo labels gives the best prediction performance, with the average root mean square error (RMSE) of the blind test dropping by 47%.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"59 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rock Physics guided machine learning for shear sonic log prediction\",\"authors\":\"Luanxiao Zhao, Jingyu Liu, Minghui Xu, Zhenyu Zhu, Yuanyuan Chen, Jianhua Geng\",\"doi\":\"10.1190/geo2023-0152.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shear wave velocity (Vs) is a vital parameter for various petrophysical, geophysical, and geomechanical applications in subsurface characterization. However, obtaining shear sonic log is often challenging since it often costs extra budget and time to acquire. Conventional methods for predicting Vs often rely on empirical relationships and rock physics models. However, these models often fall short in accuracy due to their inability to account for the complex nonlinear factors affecting the relationship between Vs and other parameters. We propose a physics-guided machine learning approach to predict shear sonic log using the various physical parameters (e.g. natural gamma ray, P-wave velocity, density, resistivity) that can be routinely obtained from standard logging suites. Three types of rock physical constraints including the mudrock line, empirical P- and S- wave velocity relationship and multi-parameter regression from the logging data, are combined with three physical guidance strategies including constructing physics-guided pseudo labels, physics-guided loss function and transfer learning, to blind test four wells based on one training well in a clastic reservoir. Compared to pure supervised ML, all the model that incorporates physical constraints significantly improves prediction accuracy and generalization performance, demonstrating the importance of incorporating first-order physical laws into data-driven network training. The multi-parameter regression relationship combined with the strategy of constructing physics-guided pseudo labels gives the best prediction performance, with the average root mean square error (RMSE) of the blind test dropping by 47%.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0152.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0152.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Rock Physics guided machine learning for shear sonic log prediction
Shear wave velocity (Vs) is a vital parameter for various petrophysical, geophysical, and geomechanical applications in subsurface characterization. However, obtaining shear sonic log is often challenging since it often costs extra budget and time to acquire. Conventional methods for predicting Vs often rely on empirical relationships and rock physics models. However, these models often fall short in accuracy due to their inability to account for the complex nonlinear factors affecting the relationship between Vs and other parameters. We propose a physics-guided machine learning approach to predict shear sonic log using the various physical parameters (e.g. natural gamma ray, P-wave velocity, density, resistivity) that can be routinely obtained from standard logging suites. Three types of rock physical constraints including the mudrock line, empirical P- and S- wave velocity relationship and multi-parameter regression from the logging data, are combined with three physical guidance strategies including constructing physics-guided pseudo labels, physics-guided loss function and transfer learning, to blind test four wells based on one training well in a clastic reservoir. Compared to pure supervised ML, all the model that incorporates physical constraints significantly improves prediction accuracy and generalization performance, demonstrating the importance of incorporating first-order physical laws into data-driven network training. The multi-parameter regression relationship combined with the strategy of constructing physics-guided pseudo labels gives the best prediction performance, with the average root mean square error (RMSE) of the blind test dropping by 47%.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.