Cartan型Lie超代数的抛物型BGG范畴及其块分解

Pub Date : 2023-10-11 DOI:10.2969/jmsj/90439043
Fei-Fei DUAN, Bin SHU, Yu-Feng YAO
{"title":"Cartan型Lie超代数的抛物型BGG范畴及其块分解","authors":"Fei-Fei DUAN, Bin SHU, Yu-Feng YAO","doi":"10.2969/jmsj/90439043","DOIUrl":null,"url":null,"abstract":"In this paper, we study the parabolic BGG categories for graded Lie superalgebras of Cartan type over the field of complex numbers. The gradation of such a Lie superalgebra $\\mathfrak{g}$ naturally arises, with the zero component $\\mathfrak{g}_{0}$ being a reductive Lie algebra. We first show that there are only two proper parabolic subalgebras containing Levi subalgebra $\\mathfrak{g}_{0}$: the “maximal one” $\\mathsf{P}_{\\max}$ and the “minimal one” $\\mathsf{P}_{\\min}$. Furthermore, the parabolic BGG category arising from $\\mathsf{P}_{\\max}$ essentially turns out to be a subcategory of the one arising from $\\mathsf{P}_{\\min}$. Such a priority of $\\mathsf{P}_{\\min}$ in the sense of representation theory reduces the question to the study of the “minimal parabolic” BGG category $\\mathcal{O}^{\\min}$ associated with $\\mathsf{P}_{\\min}$. We prove the existence of projective covers of simple objects in these categories, which enables us to establish a satisfactory block theory. Most notably, our main results are as follows. (1) We classify and obtain a precise description of the blocks of $\\mathcal{O}^{\\min}$. (2) We investigate indecomposable tilting and indecomposable projective modules in $\\mathcal{O}^{\\min}$, and compute their character formulas.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parabolic BGG categories and their block decomposition for Lie superalgebras of Cartan type\",\"authors\":\"Fei-Fei DUAN, Bin SHU, Yu-Feng YAO\",\"doi\":\"10.2969/jmsj/90439043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the parabolic BGG categories for graded Lie superalgebras of Cartan type over the field of complex numbers. The gradation of such a Lie superalgebra $\\\\mathfrak{g}$ naturally arises, with the zero component $\\\\mathfrak{g}_{0}$ being a reductive Lie algebra. We first show that there are only two proper parabolic subalgebras containing Levi subalgebra $\\\\mathfrak{g}_{0}$: the “maximal one” $\\\\mathsf{P}_{\\\\max}$ and the “minimal one” $\\\\mathsf{P}_{\\\\min}$. Furthermore, the parabolic BGG category arising from $\\\\mathsf{P}_{\\\\max}$ essentially turns out to be a subcategory of the one arising from $\\\\mathsf{P}_{\\\\min}$. Such a priority of $\\\\mathsf{P}_{\\\\min}$ in the sense of representation theory reduces the question to the study of the “minimal parabolic” BGG category $\\\\mathcal{O}^{\\\\min}$ associated with $\\\\mathsf{P}_{\\\\min}$. We prove the existence of projective covers of simple objects in these categories, which enables us to establish a satisfactory block theory. Most notably, our main results are as follows. (1) We classify and obtain a precise description of the blocks of $\\\\mathcal{O}^{\\\\min}$. (2) We investigate indecomposable tilting and indecomposable projective modules in $\\\\mathcal{O}^{\\\\min}$, and compute their character formulas.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/90439043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/jmsj/90439043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了复数域上Cartan型分级李超代数的抛物型BGG范畴。这样的李超代数$\mathfrak{g}$的渐变自然产生,零分量$\mathfrak{g}_{0}$是一个约化李代数。我们首先证明了只有两个包含Levi子代数$\mathfrak{g}_{0}$的固有抛物子代数:“极大子代数”$\mathsf{P}_{\max}$和“极小子代数”$\mathsf{P}_{\min}$。此外,由$\mathsf{P}_{\max}$产生的抛物型BGG类别实际上是由$\mathsf{P}_{\min}$产生的类别的子类别。这种$\mathsf{P}_{\min}$在表征理论意义上的优先级将问题简化为与$\mathsf{P}_{\min}$相关的“最小抛物线”BGG类别$\mathcal{O}^{\min}$的研究。我们证明了这些范畴中简单对象的射影覆盖的存在性,从而建立了一个令人满意的块论。最值得注意的是,我们的主要结果如下。(1)我们对$\mathcal{O}^{\min}$的块进行了分类并得到了精确的描述。(2)研究了$\mathcal{O}^{\min}$中不可分解的倾斜模和不可分解的投影模,并计算了它们的特征公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Parabolic BGG categories and their block decomposition for Lie superalgebras of Cartan type
In this paper, we study the parabolic BGG categories for graded Lie superalgebras of Cartan type over the field of complex numbers. The gradation of such a Lie superalgebra $\mathfrak{g}$ naturally arises, with the zero component $\mathfrak{g}_{0}$ being a reductive Lie algebra. We first show that there are only two proper parabolic subalgebras containing Levi subalgebra $\mathfrak{g}_{0}$: the “maximal one” $\mathsf{P}_{\max}$ and the “minimal one” $\mathsf{P}_{\min}$. Furthermore, the parabolic BGG category arising from $\mathsf{P}_{\max}$ essentially turns out to be a subcategory of the one arising from $\mathsf{P}_{\min}$. Such a priority of $\mathsf{P}_{\min}$ in the sense of representation theory reduces the question to the study of the “minimal parabolic” BGG category $\mathcal{O}^{\min}$ associated with $\mathsf{P}_{\min}$. We prove the existence of projective covers of simple objects in these categories, which enables us to establish a satisfactory block theory. Most notably, our main results are as follows. (1) We classify and obtain a precise description of the blocks of $\mathcal{O}^{\min}$. (2) We investigate indecomposable tilting and indecomposable projective modules in $\mathcal{O}^{\min}$, and compute their character formulas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信