基于事件触发机制的一阶非线性多智能体系统的leader -follow集群-delay共识控制

IF 1.3 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Yan Li, Kewen Li, Yongming Li
{"title":"基于事件触发机制的一阶非线性多智能体系统的leader -follow集群-delay共识控制","authors":"Yan Li, Kewen Li, Yongming Li","doi":"10.1177/00202940231203197","DOIUrl":null,"url":null,"abstract":"In this paper, the event-triggered-based cluster-delay consensus control problem is investigated for leader-following nonlinear multi-agent systems (MASs). In control design, both state triggering in the agents’ network and constant time-delay in the leaders’ communication network are considered. Under the framework of Lyapunov function stability theory, the Lipschitz condition is used to overcome the influence caused by time-delay. In order to further effectively utilize data transmission resources, and reduce the communication load of the topology network between each agent, an event-triggered mechanism is established. Subsequently, a robust cluster consensus control strategy is proposed based on event-triggered mechanism, which can ensure all signals of the controlled system are bounded, and the tracking errors converge to zero. In addition, it can also effectively avoid the Zeno behavior. Finally, the effectiveness of the presented control method and theory is verified by a simulation example.","PeriodicalId":49849,"journal":{"name":"Measurement & Control","volume":"59 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leader-following cluster-delay consensus control for first-order nonlinear multi-agent systems based on event-triggered mechanism\",\"authors\":\"Yan Li, Kewen Li, Yongming Li\",\"doi\":\"10.1177/00202940231203197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the event-triggered-based cluster-delay consensus control problem is investigated for leader-following nonlinear multi-agent systems (MASs). In control design, both state triggering in the agents’ network and constant time-delay in the leaders’ communication network are considered. Under the framework of Lyapunov function stability theory, the Lipschitz condition is used to overcome the influence caused by time-delay. In order to further effectively utilize data transmission resources, and reduce the communication load of the topology network between each agent, an event-triggered mechanism is established. Subsequently, a robust cluster consensus control strategy is proposed based on event-triggered mechanism, which can ensure all signals of the controlled system are bounded, and the tracking errors converge to zero. In addition, it can also effectively avoid the Zeno behavior. Finally, the effectiveness of the presented control method and theory is verified by a simulation example.\",\"PeriodicalId\":49849,\"journal\":{\"name\":\"Measurement & Control\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231203197\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231203197","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类基于事件触发的非线性多智能体系统的群延迟一致性控制问题。在控制设计中,既考虑了agent网络中的状态触发,又考虑了leader通信网络中的恒定时延。在李雅普诺夫函数稳定性理论的框架下,利用Lipschitz条件克服了时滞的影响。为了进一步有效地利用数据传输资源,降低各agent之间拓扑网络的通信负荷,建立了事件触发机制。随后,提出了一种基于事件触发机制的鲁棒集群共识控制策略,该策略能保证被控系统的所有信号都是有界的,并且跟踪误差收敛于零。此外,它还可以有效地避免芝诺行为。最后,通过仿真实例验证了所提控制方法和理论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leader-following cluster-delay consensus control for first-order nonlinear multi-agent systems based on event-triggered mechanism
In this paper, the event-triggered-based cluster-delay consensus control problem is investigated for leader-following nonlinear multi-agent systems (MASs). In control design, both state triggering in the agents’ network and constant time-delay in the leaders’ communication network are considered. Under the framework of Lyapunov function stability theory, the Lipschitz condition is used to overcome the influence caused by time-delay. In order to further effectively utilize data transmission resources, and reduce the communication load of the topology network between each agent, an event-triggered mechanism is established. Subsequently, a robust cluster consensus control strategy is proposed based on event-triggered mechanism, which can ensure all signals of the controlled system are bounded, and the tracking errors converge to zero. In addition, it can also effectively avoid the Zeno behavior. Finally, the effectiveness of the presented control method and theory is verified by a simulation example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement & Control
Measurement & Control 工程技术-仪器仪表
自引率
10.00%
发文量
164
审稿时长
>12 weeks
期刊介绍: Measurement and Control publishes peer-reviewed practical and technical research and news pieces from both the science and engineering industry and academia. Whilst focusing more broadly on topics of relevance for practitioners in instrumentation and control, the journal also includes updates on both product and business announcements and information on technical advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信