定向能沉积和后续球抛光产生的刀具表面特性的表征

IF 2.4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Anna Komodromos, Joshua Grodotzki, Felix Kolpak, A. Erman Tekkaya
{"title":"定向能沉积和后续球抛光产生的刀具表面特性的表征","authors":"Anna Komodromos, Joshua Grodotzki, Felix Kolpak, A. Erman Tekkaya","doi":"10.1115/1.4063736","DOIUrl":null,"url":null,"abstract":"Abstract By Directed Energy Deposition (DED) a flexible design of cooling channels in forming tools, e.g. hot stamping, with a variety of sizes and a high positioning flexibility compared to machining processes is possible. The subsequent ball burnishing of the tool surfaces in combination with a variation of the DED process parameters enables a control of the tool surface properties and the friction behavior. Parameters such as the ball burnishing pressure or the path overlapping in the DED process are investigated to quantify their effects on roughness, hardness, friction, residual stresses and heat transfer coefficient of generic tool surfaces. The friction coefficient at elevated temperatures depends strongly on the surface roughness of the tool steel surfaces generated by DED and ball burnishing. The latter process improves the surface integrity: the roughness peaks are leveled by up to 75 %, the hardness and the residual stresses are enhanced by up to 20 % and 70 %, respectively. However, the roughness of the tool surfaces is determined mainly by the path overlapping of the welded beads in the DED process. Despite the higher surface roughness, the heat transfer coefficient is in the range of conventionally manufactured tool surfaces of up to 2,700 W/m2K for contact pressures up to 40 MPa. First hot stamping experiments demonstrate that the tools manufactured by the novel process combination are able to manufacture 22MnB5 hat profiles with an increased and more homogenous hardness as well as more homogeneous thickness distribution compared to conventionally manufactured tools.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"195 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Tool Surface Properties Generated by Directed Energy Deposition and Subsequent Ball Burnishing\",\"authors\":\"Anna Komodromos, Joshua Grodotzki, Felix Kolpak, A. Erman Tekkaya\",\"doi\":\"10.1115/1.4063736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract By Directed Energy Deposition (DED) a flexible design of cooling channels in forming tools, e.g. hot stamping, with a variety of sizes and a high positioning flexibility compared to machining processes is possible. The subsequent ball burnishing of the tool surfaces in combination with a variation of the DED process parameters enables a control of the tool surface properties and the friction behavior. Parameters such as the ball burnishing pressure or the path overlapping in the DED process are investigated to quantify their effects on roughness, hardness, friction, residual stresses and heat transfer coefficient of generic tool surfaces. The friction coefficient at elevated temperatures depends strongly on the surface roughness of the tool steel surfaces generated by DED and ball burnishing. The latter process improves the surface integrity: the roughness peaks are leveled by up to 75 %, the hardness and the residual stresses are enhanced by up to 20 % and 70 %, respectively. However, the roughness of the tool surfaces is determined mainly by the path overlapping of the welded beads in the DED process. Despite the higher surface roughness, the heat transfer coefficient is in the range of conventionally manufactured tool surfaces of up to 2,700 W/m2K for contact pressures up to 40 MPa. First hot stamping experiments demonstrate that the tools manufactured by the novel process combination are able to manufacture 22MnB5 hat profiles with an increased and more homogenous hardness as well as more homogeneous thickness distribution compared to conventionally manufactured tools.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063736\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063736","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

通过定向能量沉积(DED),可以灵活地设计成形工具(如热冲压)的冷却通道,具有各种尺寸和与机械加工工艺相比的高定位灵活性。随后对刀具表面进行球磨,结合DED工艺参数的变化,可以控制刀具表面特性和摩擦行为。研究了球面抛光压力或路径重叠等参数对通用刀具表面粗糙度、硬度、摩擦、残余应力和传热系数的影响。高温下的摩擦系数很大程度上取决于由DED和球抛光产生的工具钢表面的表面粗糙度。后一种工艺提高了表面的完整性:粗糙度峰值提高了75%,硬度和残余应力分别提高了20%和70%。然而,工具表面的粗糙度主要是由焊珠在DED过程中的路径重叠决定的。尽管表面粗糙度更高,但在接触压力高达40 MPa的情况下,传统制造的刀具表面传热系数可达2,700 W/m2K。首先,热冲压实验表明,与传统制造的刀具相比,采用新工艺组合制造的刀具能够制造出硬度更高、厚度分布更均匀的22MnB5帽型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Tool Surface Properties Generated by Directed Energy Deposition and Subsequent Ball Burnishing
Abstract By Directed Energy Deposition (DED) a flexible design of cooling channels in forming tools, e.g. hot stamping, with a variety of sizes and a high positioning flexibility compared to machining processes is possible. The subsequent ball burnishing of the tool surfaces in combination with a variation of the DED process parameters enables a control of the tool surface properties and the friction behavior. Parameters such as the ball burnishing pressure or the path overlapping in the DED process are investigated to quantify their effects on roughness, hardness, friction, residual stresses and heat transfer coefficient of generic tool surfaces. The friction coefficient at elevated temperatures depends strongly on the surface roughness of the tool steel surfaces generated by DED and ball burnishing. The latter process improves the surface integrity: the roughness peaks are leveled by up to 75 %, the hardness and the residual stresses are enhanced by up to 20 % and 70 %, respectively. However, the roughness of the tool surfaces is determined mainly by the path overlapping of the welded beads in the DED process. Despite the higher surface roughness, the heat transfer coefficient is in the range of conventionally manufactured tool surfaces of up to 2,700 W/m2K for contact pressures up to 40 MPa. First hot stamping experiments demonstrate that the tools manufactured by the novel process combination are able to manufacture 22MnB5 hat profiles with an increased and more homogenous hardness as well as more homogeneous thickness distribution compared to conventionally manufactured tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
20.00%
发文量
126
审稿时长
12 months
期刊介绍: Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信