{"title":"轻推松紧带和轻绑Skyrmions","authors":"James Martin Speight, Thomas Winyard","doi":"10.3842/sigma.2023.073","DOIUrl":null,"url":null,"abstract":"It has become clear in recent years that the configuration space of the nuclear Skyrme model has, in each topological class, many almost degenerate local energy minima and that the number of such minima grows with the degree (or baryon number) $B$. Rigid body quantization, in which one quantizes motion on the spin-isospin orbit of just one minimum, is thus an ill-justified approximation. Instead, one should identify a (finite-dimensional) moduli space of configurations containing all local minima (for a given $B$) as well as fields interpolating smoothly between them. This paper proposes a systematic computational scheme for generating such a moduli space: one constructs an energy minimizing path between each pair of local minima, then defines the moduli space to be the union of spin-isospin orbits of points on the union of these curves, a principal bundle over a graph. The energy minimizing curves may be constructed in practice using the nudged elastic band method, a standard tool in mathematical chemistry for analyzing reaction paths and computing activation energies. To illustrate, we apply this scheme to the lightly bound Skyrme model in the point particle approximation, constructing the graphs for $5\\leq B\\leq 10$. We go on to complete the quantization for $B=7$, in which the graph has two vertices and a single edge. The low-lying quantum states with isospin $1/2$ do not strongly localize around either of the local energy minima (the vertices). Their energies rise monotonically with spin, conflicting with experimental data for Lithium-7.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nudged Elastic Bands and Lightly Bound Skyrmions\",\"authors\":\"James Martin Speight, Thomas Winyard\",\"doi\":\"10.3842/sigma.2023.073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has become clear in recent years that the configuration space of the nuclear Skyrme model has, in each topological class, many almost degenerate local energy minima and that the number of such minima grows with the degree (or baryon number) $B$. Rigid body quantization, in which one quantizes motion on the spin-isospin orbit of just one minimum, is thus an ill-justified approximation. Instead, one should identify a (finite-dimensional) moduli space of configurations containing all local minima (for a given $B$) as well as fields interpolating smoothly between them. This paper proposes a systematic computational scheme for generating such a moduli space: one constructs an energy minimizing path between each pair of local minima, then defines the moduli space to be the union of spin-isospin orbits of points on the union of these curves, a principal bundle over a graph. The energy minimizing curves may be constructed in practice using the nudged elastic band method, a standard tool in mathematical chemistry for analyzing reaction paths and computing activation energies. To illustrate, we apply this scheme to the lightly bound Skyrme model in the point particle approximation, constructing the graphs for $5\\\\leq B\\\\leq 10$. We go on to complete the quantization for $B=7$, in which the graph has two vertices and a single edge. The low-lying quantum states with isospin $1/2$ do not strongly localize around either of the local energy minima (the vertices). Their energies rise monotonically with spin, conflicting with experimental data for Lithium-7.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2023.073\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.073","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
It has become clear in recent years that the configuration space of the nuclear Skyrme model has, in each topological class, many almost degenerate local energy minima and that the number of such minima grows with the degree (or baryon number) $B$. Rigid body quantization, in which one quantizes motion on the spin-isospin orbit of just one minimum, is thus an ill-justified approximation. Instead, one should identify a (finite-dimensional) moduli space of configurations containing all local minima (for a given $B$) as well as fields interpolating smoothly between them. This paper proposes a systematic computational scheme for generating such a moduli space: one constructs an energy minimizing path between each pair of local minima, then defines the moduli space to be the union of spin-isospin orbits of points on the union of these curves, a principal bundle over a graph. The energy minimizing curves may be constructed in practice using the nudged elastic band method, a standard tool in mathematical chemistry for analyzing reaction paths and computing activation energies. To illustrate, we apply this scheme to the lightly bound Skyrme model in the point particle approximation, constructing the graphs for $5\leq B\leq 10$. We go on to complete the quantization for $B=7$, in which the graph has two vertices and a single edge. The low-lying quantum states with isospin $1/2$ do not strongly localize around either of the local energy minima (the vertices). Their energies rise monotonically with spin, conflicting with experimental data for Lithium-7.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.