{"title":"基于IMBMDCR-Net的宫颈细胞图像自动分割","authors":"Yanjing Ding, Weiwei Yue, Qinghua Li","doi":"10.18178/ijml.2023.13.4.1146","DOIUrl":null,"url":null,"abstract":"Early screening of cervical lesions is of great significance in pathological diagnosis. Owing to the complexity of cell morphological changes and the limitations of medical images, accurate segmentation of cervical cells is still a challenging task. In this paper, an isomorphic multi-branch modulation deformable convolution residual model is proposed to extract features for enhancing the segmentation of small cells and overlapping cytoplasmic boundaries. Then the regional feature extraction, boundary box recognition, and adding a single pixel-level mask at the last level are integrated and optimized based on the cascade regional convolution neural network (Cascade R-CNN) to complete the segmentation of cervical cells for getting better accuracy. The proposed framework was evaluated on the ISBI2014 cervical cell segmentation competition public dataset. Experimental results show that the average accuracy of the network model in cervical cell segmentation is 81.1%, and the accuracy of small targets is 77%. To some extent, it can assist pathologists in screening cervical cancer in the early phase.","PeriodicalId":91709,"journal":{"name":"International journal of machine learning and computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Segmentation of Cervical Cell Images Using IMBMDCR-Net\",\"authors\":\"Yanjing Ding, Weiwei Yue, Qinghua Li\",\"doi\":\"10.18178/ijml.2023.13.4.1146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early screening of cervical lesions is of great significance in pathological diagnosis. Owing to the complexity of cell morphological changes and the limitations of medical images, accurate segmentation of cervical cells is still a challenging task. In this paper, an isomorphic multi-branch modulation deformable convolution residual model is proposed to extract features for enhancing the segmentation of small cells and overlapping cytoplasmic boundaries. Then the regional feature extraction, boundary box recognition, and adding a single pixel-level mask at the last level are integrated and optimized based on the cascade regional convolution neural network (Cascade R-CNN) to complete the segmentation of cervical cells for getting better accuracy. The proposed framework was evaluated on the ISBI2014 cervical cell segmentation competition public dataset. Experimental results show that the average accuracy of the network model in cervical cell segmentation is 81.1%, and the accuracy of small targets is 77%. To some extent, it can assist pathologists in screening cervical cancer in the early phase.\",\"PeriodicalId\":91709,\"journal\":{\"name\":\"International journal of machine learning and computing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of machine learning and computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijml.2023.13.4.1146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of machine learning and computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijml.2023.13.4.1146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Segmentation of Cervical Cell Images Using IMBMDCR-Net
Early screening of cervical lesions is of great significance in pathological diagnosis. Owing to the complexity of cell morphological changes and the limitations of medical images, accurate segmentation of cervical cells is still a challenging task. In this paper, an isomorphic multi-branch modulation deformable convolution residual model is proposed to extract features for enhancing the segmentation of small cells and overlapping cytoplasmic boundaries. Then the regional feature extraction, boundary box recognition, and adding a single pixel-level mask at the last level are integrated and optimized based on the cascade regional convolution neural network (Cascade R-CNN) to complete the segmentation of cervical cells for getting better accuracy. The proposed framework was evaluated on the ISBI2014 cervical cell segmentation competition public dataset. Experimental results show that the average accuracy of the network model in cervical cell segmentation is 81.1%, and the accuracy of small targets is 77%. To some extent, it can assist pathologists in screening cervical cancer in the early phase.