矿山酸性水对湿地砷形态影响的研究

S Chetty, M Humphries, K Blümlein, L Pillay
{"title":"矿山酸性水对湿地砷形态影响的研究","authors":"S Chetty, M Humphries, K Blümlein, L Pillay","doi":"10.17159/0379-4350/2023/v77a15","DOIUrl":null,"url":null,"abstract":"The formation of acid mine drainage (AMD) and release of toxic contaminants, such as arsenic (As), is a serious environmental problem encountered worldwide. In this study, we investigate the crucial role the Klip River wetland system plays in attenuating As arising from gold mining activities within the Witwatersrand Basin in Johannesburg, South Africa. Mining operations in the region commenced over 130 years ago and have been associated with the widespread pollution of water resources by AMD. We investigated As concentrations, bioavailability and speciation in a peat core from the Klip River wetland as well as in samples from the main tributaries and tailing storage facilities (TSFs) in the upper catchment. Total As concentrations in tributary and TSFs samples ranged between 10.1-89.9 mgkg-1 and 77.4-106 mg kg-1, respectively, with concentrations in the wetland varying between 1.91-73.8 mg kg-1. In general, As bioavailability was low in both catchment (19%) and wetland (4%) samples, with elemental associations suggesting the majority is bound in an immobile form to organic matter and sulfide. As(v) was the predominant species detected in all samples (0.0901-16.6 mg kg-1), with As(m), MMA and DMA present in lower concentrations. Strong correlations between As and S suggest that speciation and methylation are dependent on both chemical and microbial activity. The study highlights the vital role that wetlands can play in sequestering As in the environment.","PeriodicalId":21882,"journal":{"name":"South African journal of chemistry","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation into arsenic speciation in a wetland impacted by acid mine drainage\",\"authors\":\"S Chetty, M Humphries, K Blümlein, L Pillay\",\"doi\":\"10.17159/0379-4350/2023/v77a15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formation of acid mine drainage (AMD) and release of toxic contaminants, such as arsenic (As), is a serious environmental problem encountered worldwide. In this study, we investigate the crucial role the Klip River wetland system plays in attenuating As arising from gold mining activities within the Witwatersrand Basin in Johannesburg, South Africa. Mining operations in the region commenced over 130 years ago and have been associated with the widespread pollution of water resources by AMD. We investigated As concentrations, bioavailability and speciation in a peat core from the Klip River wetland as well as in samples from the main tributaries and tailing storage facilities (TSFs) in the upper catchment. Total As concentrations in tributary and TSFs samples ranged between 10.1-89.9 mgkg-1 and 77.4-106 mg kg-1, respectively, with concentrations in the wetland varying between 1.91-73.8 mg kg-1. In general, As bioavailability was low in both catchment (19%) and wetland (4%) samples, with elemental associations suggesting the majority is bound in an immobile form to organic matter and sulfide. As(v) was the predominant species detected in all samples (0.0901-16.6 mg kg-1), with As(m), MMA and DMA present in lower concentrations. Strong correlations between As and S suggest that speciation and methylation are dependent on both chemical and microbial activity. The study highlights the vital role that wetlands can play in sequestering As in the environment.\",\"PeriodicalId\":21882,\"journal\":{\"name\":\"South African journal of chemistry\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African journal of chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17159/0379-4350/2023/v77a15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African journal of chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/0379-4350/2023/v77a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

酸性矿井水的形成和砷等有毒污染物的释放是世界范围内面临的一个严重的环境问题。在这项研究中,我们研究了Klip河湿地系统在衰减南非约翰内斯堡威特沃特斯兰德盆地金矿开采活动产生的As中所起的关键作用。该地区的采矿作业始于130多年前,与AMD对水资源的广泛污染有关。我们研究了Klip河湿地泥炭核心以及上游流域主要支流和尾矿储存设施(TSFs)样品中的As浓度、生物利用度和物种形态。支流和TSFs样品中总砷含量分别在10.1 ~ 89.9 mg -1和77.4 ~ 106 mg -1之间,湿地中总砷含量在1.91 ~ 73.8 mg -1之间。总的来说,集水区(19%)和湿地(4%)样品的As生物利用度都很低,元素关联表明大多数以固定形式与有机物和硫化物结合。在所有样品中,As(v)为优势种(0.0901 ~ 16.6 mg kg-1), As(m)、MMA和DMA浓度较低。As和S之间的强相关性表明,物种形成和甲基化依赖于化学和微生物活动。这项研究强调了湿地在隔绝环境中的砷方面所起的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An investigation into arsenic speciation in a wetland impacted by acid mine drainage
The formation of acid mine drainage (AMD) and release of toxic contaminants, such as arsenic (As), is a serious environmental problem encountered worldwide. In this study, we investigate the crucial role the Klip River wetland system plays in attenuating As arising from gold mining activities within the Witwatersrand Basin in Johannesburg, South Africa. Mining operations in the region commenced over 130 years ago and have been associated with the widespread pollution of water resources by AMD. We investigated As concentrations, bioavailability and speciation in a peat core from the Klip River wetland as well as in samples from the main tributaries and tailing storage facilities (TSFs) in the upper catchment. Total As concentrations in tributary and TSFs samples ranged between 10.1-89.9 mgkg-1 and 77.4-106 mg kg-1, respectively, with concentrations in the wetland varying between 1.91-73.8 mg kg-1. In general, As bioavailability was low in both catchment (19%) and wetland (4%) samples, with elemental associations suggesting the majority is bound in an immobile form to organic matter and sulfide. As(v) was the predominant species detected in all samples (0.0901-16.6 mg kg-1), with As(m), MMA and DMA present in lower concentrations. Strong correlations between As and S suggest that speciation and methylation are dependent on both chemical and microbial activity. The study highlights the vital role that wetlands can play in sequestering As in the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信