{"title":"基于AIS数据模型和非线性有限元的桥船碰撞风险分析","authors":"Canglong Zhao, Xiang Cao, Yunye Ren","doi":"10.1515/nleng-2022-0324","DOIUrl":null,"url":null,"abstract":"Abstract To solve the problem of calculating the probability of ship collision in ship bridge collision risk assessment, the impact parameters of ship collision are obtained based on the automatic identification system (AIS) data to solve the problem that the existing methods do not consider the actual navigable ship information in a specific bridge navigation area. Based on AIS data, the dynamics of sailing ships are analyzed, parameters such as ship position, speed, and yaw angle, are obtained, ship traffic flow is analyzed, and the geometric probability in the actual ship traffic flow specification model is modified. The results before and after correction were compared and analyzed. The results show that the maximum transverse displacement of the anti-collision device is about 1.5 s under all working conditions, indicating that the collision force drops continuously from this moment to 0 in the collision force time history. In the process of collision, the anti-collision device absorbs part of the collision energy through its own deformation. Under the premise of a certain initial kinetic energy, the deformation caused by the collision energy absorption after fortification will be reduced. The anti-collision device has local permanent deformation under the impact of 5,000 t ship, but no damage and failure, and will not cause water entry and subsidence. It proves that the constructed fishery ship collision risk assessment model and the developed fishery ship safety management and evaluation system are reliable and the prediction results are credible, which can provide scientific methods for the safety management and evaluation of fishery vessels. For the bridge area with complicated ship navigation conditions, it is necessary to use the actual navigable ship information obtained based on AIS data to estimate the distribution of ships in the bridge area to improve the accuracy of the calculation results.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":"15 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk analysis of bridge ship collision based on AIS data model and nonlinear finite element\",\"authors\":\"Canglong Zhao, Xiang Cao, Yunye Ren\",\"doi\":\"10.1515/nleng-2022-0324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To solve the problem of calculating the probability of ship collision in ship bridge collision risk assessment, the impact parameters of ship collision are obtained based on the automatic identification system (AIS) data to solve the problem that the existing methods do not consider the actual navigable ship information in a specific bridge navigation area. Based on AIS data, the dynamics of sailing ships are analyzed, parameters such as ship position, speed, and yaw angle, are obtained, ship traffic flow is analyzed, and the geometric probability in the actual ship traffic flow specification model is modified. The results before and after correction were compared and analyzed. The results show that the maximum transverse displacement of the anti-collision device is about 1.5 s under all working conditions, indicating that the collision force drops continuously from this moment to 0 in the collision force time history. In the process of collision, the anti-collision device absorbs part of the collision energy through its own deformation. Under the premise of a certain initial kinetic energy, the deformation caused by the collision energy absorption after fortification will be reduced. The anti-collision device has local permanent deformation under the impact of 5,000 t ship, but no damage and failure, and will not cause water entry and subsidence. It proves that the constructed fishery ship collision risk assessment model and the developed fishery ship safety management and evaluation system are reliable and the prediction results are credible, which can provide scientific methods for the safety management and evaluation of fishery vessels. For the bridge area with complicated ship navigation conditions, it is necessary to use the actual navigable ship information obtained based on AIS data to estimate the distribution of ships in the bridge area to improve the accuracy of the calculation results.\",\"PeriodicalId\":37863,\"journal\":{\"name\":\"Nonlinear Engineering - Modeling and Application\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Engineering - Modeling and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nleng-2022-0324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Risk analysis of bridge ship collision based on AIS data model and nonlinear finite element
Abstract To solve the problem of calculating the probability of ship collision in ship bridge collision risk assessment, the impact parameters of ship collision are obtained based on the automatic identification system (AIS) data to solve the problem that the existing methods do not consider the actual navigable ship information in a specific bridge navigation area. Based on AIS data, the dynamics of sailing ships are analyzed, parameters such as ship position, speed, and yaw angle, are obtained, ship traffic flow is analyzed, and the geometric probability in the actual ship traffic flow specification model is modified. The results before and after correction were compared and analyzed. The results show that the maximum transverse displacement of the anti-collision device is about 1.5 s under all working conditions, indicating that the collision force drops continuously from this moment to 0 in the collision force time history. In the process of collision, the anti-collision device absorbs part of the collision energy through its own deformation. Under the premise of a certain initial kinetic energy, the deformation caused by the collision energy absorption after fortification will be reduced. The anti-collision device has local permanent deformation under the impact of 5,000 t ship, but no damage and failure, and will not cause water entry and subsidence. It proves that the constructed fishery ship collision risk assessment model and the developed fishery ship safety management and evaluation system are reliable and the prediction results are credible, which can provide scientific methods for the safety management and evaluation of fishery vessels. For the bridge area with complicated ship navigation conditions, it is necessary to use the actual navigable ship information obtained based on AIS data to estimate the distribution of ships in the bridge area to improve the accuracy of the calculation results.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.