$A$数值半径界的改进

IF 0.6 4区 数学 Q3 MATHEMATICS
Raj Kumar NAYAK, Pintu BHUNIA, Kallol PAUL
{"title":"$A$数值半径界的改进","authors":"Raj Kumar NAYAK, Pintu BHUNIA, Kallol PAUL","doi":"10.14492/hokmj/2022-603","DOIUrl":null,"url":null,"abstract":"We obtain upper and lower bounds for the $A$-numerical radius inequalities of operators and operator matrices which generalize and improve on the existing ones. We present new upper bounds for the $A$-numerical radius of the product of two operators. We also develop various inequalities for the $A$-numerical radius of $2 \\times 2 $ operator matrices.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvements of $A$-numerical radius bounds\",\"authors\":\"Raj Kumar NAYAK, Pintu BHUNIA, Kallol PAUL\",\"doi\":\"10.14492/hokmj/2022-603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain upper and lower bounds for the $A$-numerical radius inequalities of operators and operator matrices which generalize and improve on the existing ones. We present new upper bounds for the $A$-numerical radius of the product of two operators. We also develop various inequalities for the $A$-numerical radius of $2 \\\\times 2 $ operator matrices.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/2022-603\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14492/hokmj/2022-603","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

得到了算子和算子矩阵的$A$数值半径不等式的上界和下界,对已有的算子和算子矩阵的上界和下界进行了推广和改进。给出了两个算子之积的A数值半径的新上界。我们还为$2 \乘以$2 $算子矩阵的$A$数值半径开发了各种不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvements of $A$-numerical radius bounds
We obtain upper and lower bounds for the $A$-numerical radius inequalities of operators and operator matrices which generalize and improve on the existing ones. We present new upper bounds for the $A$-numerical radius of the product of two operators. We also develop various inequalities for the $A$-numerical radius of $2 \times 2 $ operator matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信