紧李群双颤振的调和映射和双调和映射

IF 0.6 4区 数学 Q3 MATHEMATICS
Hajime URAKAWA
{"title":"紧李群双颤振的调和映射和双调和映射","authors":"Hajime URAKAWA","doi":"10.14492/hokmj/2021-558","DOIUrl":null,"url":null,"abstract":"This work is motivated by the works of W.Y. Hsiang and H.B. Lawson [7], Pages $12$ and $13$. In this paper, we deal with the following double fibration: \\[ \\xymatrix@R-0.5cm @C-0.5cm{ & (G,g) \\ar[ld]_{\\pi_1} \\ar[rd]^{\\pi_2} & \\\\ (G/H,h_1) && (K\\backslash G,h_2) } \\] We will show that every $K$-invariant minimal or biharmonic hypersurface $M$ in $(G/H,h_1)$ induces an $H$-invariant minimal or biharmonic hypersurface $\\widetilde{M}$ in $(K\\backslash G,h_2)$ by means of $\\widetilde{M}:=\\pi_2(\\pi_1{}^{-1}(M))$ (cf. Theorems 3.2 and 4.1). We give a one to one correspondence between the class of all the $K$-invariant minimal or biharmonic hypersurfaces in $G/H$ and the one of all the $H$-invariant minimal or biharmonic hypersurfaces in $K\\backslash G$ (cf. Theorem 4.2).","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic maps and biharmonic maps for double fibrations of compact Lie groups\",\"authors\":\"Hajime URAKAWA\",\"doi\":\"10.14492/hokmj/2021-558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is motivated by the works of W.Y. Hsiang and H.B. Lawson [7], Pages $12$ and $13$. In this paper, we deal with the following double fibration: \\\\[ \\\\xymatrix@R-0.5cm @C-0.5cm{ & (G,g) \\\\ar[ld]_{\\\\pi_1} \\\\ar[rd]^{\\\\pi_2} & \\\\\\\\ (G/H,h_1) && (K\\\\backslash G,h_2) } \\\\] We will show that every $K$-invariant minimal or biharmonic hypersurface $M$ in $(G/H,h_1)$ induces an $H$-invariant minimal or biharmonic hypersurface $\\\\widetilde{M}$ in $(K\\\\backslash G,h_2)$ by means of $\\\\widetilde{M}:=\\\\pi_2(\\\\pi_1{}^{-1}(M))$ (cf. Theorems 3.2 and 4.1). We give a one to one correspondence between the class of all the $K$-invariant minimal or biharmonic hypersurfaces in $G/H$ and the one of all the $H$-invariant minimal or biharmonic hypersurfaces in $K\\\\backslash G$ (cf. Theorem 4.2).\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/2021-558\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14492/hokmj/2021-558","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的灵感来源于W.Y. Hsiang和H.B. Lawson [7], Pages $12$和$13$的作品。在本文中,我们处理以下双重纤维:\[ \xymatrix@R-0.5cm @C-0.5cm{ & (G,g) \ar[ld]_{\pi_1} \ar[rd]^{\pi_2} & \\ (G/H,h_1) && (K\backslash G,h_2) } \]我们将证明$(G/H,h_1)$中的每个$K$不变最小或双调和超曲面$M$通过$\widetilde{M}:=\pi_2(\pi_1{}^{-1}(M))$在$(K\backslash G,h_2)$中诱导一个$H$不变最小或双调和超曲面$\widetilde{M}$(参见定理3.2和4.1)。我们给出了$G/H$中所有$K$不变最小或双调和超曲面的类与$K\backslash G$中所有$H$不变最小或双调和超曲面的类之间的一一对应关系(参见定理4.2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic maps and biharmonic maps for double fibrations of compact Lie groups
This work is motivated by the works of W.Y. Hsiang and H.B. Lawson [7], Pages $12$ and $13$. In this paper, we deal with the following double fibration: \[ \xymatrix@R-0.5cm @C-0.5cm{ & (G,g) \ar[ld]_{\pi_1} \ar[rd]^{\pi_2} & \\ (G/H,h_1) && (K\backslash G,h_2) } \] We will show that every $K$-invariant minimal or biharmonic hypersurface $M$ in $(G/H,h_1)$ induces an $H$-invariant minimal or biharmonic hypersurface $\widetilde{M}$ in $(K\backslash G,h_2)$ by means of $\widetilde{M}:=\pi_2(\pi_1{}^{-1}(M))$ (cf. Theorems 3.2 and 4.1). We give a one to one correspondence between the class of all the $K$-invariant minimal or biharmonic hypersurfaces in $G/H$ and the one of all the $H$-invariant minimal or biharmonic hypersurfaces in $K\backslash G$ (cf. Theorem 4.2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信