分子中局部电子密度的上界

IF 0.6 4区 数学 Q3 MATHEMATICS
Sohei ASHIDA
{"title":"分子中局部电子密度的上界","authors":"Sohei ASHIDA","doi":"10.14492/hokmj/2021-577","DOIUrl":null,"url":null,"abstract":"The eigenfunctions of electronic Hamiltonians determine the stable structures and dynamics of molecules through the local distributions of their densities. In this paper an a priori upper bound for such local distributions of the densities is given. The bound means that concentration of electrons is prohibited due to the repulsion between the electrons. A relation between one-electron and two-electron densities resulting from the antisymmetry of the eigenfunctions plays a crucial role in the proof.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bounds of local electronic densities in molecules\",\"authors\":\"Sohei ASHIDA\",\"doi\":\"10.14492/hokmj/2021-577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The eigenfunctions of electronic Hamiltonians determine the stable structures and dynamics of molecules through the local distributions of their densities. In this paper an a priori upper bound for such local distributions of the densities is given. The bound means that concentration of electrons is prohibited due to the repulsion between the electrons. A relation between one-electron and two-electron densities resulting from the antisymmetry of the eigenfunctions plays a crucial role in the proof.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/2021-577\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14492/hokmj/2021-577","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

电子哈密顿量的本征函数通过分子密度的局部分布来决定分子的稳定结构和动力学。本文给出了这类密度局部分布的先验上界。束缚意味着由于电子之间的斥力,电子的集中是被禁止的。由本征函数的不对称引起的单电子密度和双电子密度之间的关系在证明中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper bounds of local electronic densities in molecules
The eigenfunctions of electronic Hamiltonians determine the stable structures and dynamics of molecules through the local distributions of their densities. In this paper an a priori upper bound for such local distributions of the densities is given. The bound means that concentration of electrons is prohibited due to the repulsion between the electrons. A relation between one-electron and two-electron densities resulting from the antisymmetry of the eigenfunctions plays a crucial role in the proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信