José Carlos Fontoura Guimarães, Claudio Barbieri da Cunha
{"title":"有容两梯队车辆路径问题的数学启发式","authors":"José Carlos Fontoura Guimarães, Claudio Barbieri da Cunha","doi":"10.1590/0101-7438.2023.043.00270829","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a math-heuristic that combines mathematical programming techniques with a heuristic approach based on the Simulated Annealing metaheuristic to solve the Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP). This problem arises in the context of a distribution network that is divided in two levels: satellite facilities that connect customers to fulfilment centers where freight originates. As it is an NP-hard problem, the proposed approach combines a cluster-first route-second math-heuristic in which approaches are more appropriate, particularly for problem sizes that are more commonly found in practice. The results of the experiments with benchmark instances show that such cluster-first route-second math-heuristic approach utilizing package solvers (CPLEX and TSP CONCORDE) can effectively help solving the CVRP for small instances when compared to an exact method. The experiments conducted on benchmark instances demonstrated the effectiveness of the proposed “cluster-first, route-second” math-heuristic approach, which utilizes package solvers such as CPLEX and TSP CONCORDE, in solving the CVRP for small instances, outperforming exact methods. This research contributes to demonstrating the potential applications of package solvers on heuristic structures for solving the CVRP. Although the presented math-heuristic has limitations, mainly due to the extensive usage of mathematical programming and the chosen characteristics of the implemented local search operators, it can quickly generate high-quality initial solutions for medium and large instances. By showcasing the “cluster-first, route-second” approach, this paper provides a framework that can be further improved by local search or embedded in other metaheuristics, such as GRASP or tabu search, and has practical implications for various industries.","PeriodicalId":35341,"journal":{"name":"Pesquisa Operacional","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MATH-HEURISTIC FOR THE CAPACITATED TWO-ECHELON VEHICLE ROUTING PROBLEM\",\"authors\":\"José Carlos Fontoura Guimarães, Claudio Barbieri da Cunha\",\"doi\":\"10.1590/0101-7438.2023.043.00270829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a math-heuristic that combines mathematical programming techniques with a heuristic approach based on the Simulated Annealing metaheuristic to solve the Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP). This problem arises in the context of a distribution network that is divided in two levels: satellite facilities that connect customers to fulfilment centers where freight originates. As it is an NP-hard problem, the proposed approach combines a cluster-first route-second math-heuristic in which approaches are more appropriate, particularly for problem sizes that are more commonly found in practice. The results of the experiments with benchmark instances show that such cluster-first route-second math-heuristic approach utilizing package solvers (CPLEX and TSP CONCORDE) can effectively help solving the CVRP for small instances when compared to an exact method. The experiments conducted on benchmark instances demonstrated the effectiveness of the proposed “cluster-first, route-second” math-heuristic approach, which utilizes package solvers such as CPLEX and TSP CONCORDE, in solving the CVRP for small instances, outperforming exact methods. This research contributes to demonstrating the potential applications of package solvers on heuristic structures for solving the CVRP. Although the presented math-heuristic has limitations, mainly due to the extensive usage of mathematical programming and the chosen characteristics of the implemented local search operators, it can quickly generate high-quality initial solutions for medium and large instances. By showcasing the “cluster-first, route-second” approach, this paper provides a framework that can be further improved by local search or embedded in other metaheuristics, such as GRASP or tabu search, and has practical implications for various industries.\",\"PeriodicalId\":35341,\"journal\":{\"name\":\"Pesquisa Operacional\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesquisa Operacional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0101-7438.2023.043.00270829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquisa Operacional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0101-7438.2023.043.00270829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
MATH-HEURISTIC FOR THE CAPACITATED TWO-ECHELON VEHICLE ROUTING PROBLEM
In this paper, we propose a math-heuristic that combines mathematical programming techniques with a heuristic approach based on the Simulated Annealing metaheuristic to solve the Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP). This problem arises in the context of a distribution network that is divided in two levels: satellite facilities that connect customers to fulfilment centers where freight originates. As it is an NP-hard problem, the proposed approach combines a cluster-first route-second math-heuristic in which approaches are more appropriate, particularly for problem sizes that are more commonly found in practice. The results of the experiments with benchmark instances show that such cluster-first route-second math-heuristic approach utilizing package solvers (CPLEX and TSP CONCORDE) can effectively help solving the CVRP for small instances when compared to an exact method. The experiments conducted on benchmark instances demonstrated the effectiveness of the proposed “cluster-first, route-second” math-heuristic approach, which utilizes package solvers such as CPLEX and TSP CONCORDE, in solving the CVRP for small instances, outperforming exact methods. This research contributes to demonstrating the potential applications of package solvers on heuristic structures for solving the CVRP. Although the presented math-heuristic has limitations, mainly due to the extensive usage of mathematical programming and the chosen characteristics of the implemented local search operators, it can quickly generate high-quality initial solutions for medium and large instances. By showcasing the “cluster-first, route-second” approach, this paper provides a framework that can be further improved by local search or embedded in other metaheuristics, such as GRASP or tabu search, and has practical implications for various industries.
Pesquisa OperacionalDecision Sciences-Management Science and Operations Research
CiteScore
1.60
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊介绍:
Pesquisa Operacional is published each semester by the Sociedade Brasileira de Pesquisa Operacional - SOBRAPO, performing one volume per year, and is distributed free of charge to its associates. The abbreviated title of the journal is Pesq. Oper., which should be used in bibliographies, footnotes and bibliographical references and strips.