关于最小分散布线问题的np -硬度

Q4 Decision Sciences
Guilherme Dhein, Marcelo Serrano Zanetti, Olinto César Bassi de Araújo
{"title":"关于最小分散布线问题的np -硬度","authors":"Guilherme Dhein, Marcelo Serrano Zanetti, Olinto César Bassi de Araújo","doi":"10.1590/0101-7438.2023.043.00270974","DOIUrl":null,"url":null,"abstract":"In the Minimum Dispersion Routing Problem, a set of vertices must be served by tours with trajectories defined in order to reduce the dispersion of vehicles. Tours must be related to each other and impose a spatial and temporal synchronization among vehicles, quantified by an original dispersion metric used in an objective function to be minimized. In this paper, we demonstrate that Euclidean Traveling Salesman Problem solutions can be found by MDRP solvers. We describe a method to reduce Euclidean Traveling Salesman Problem instances to Minimum Dispersion Routing Problem instances in polynomial time, proving that the last one is NP-Hard.","PeriodicalId":35341,"journal":{"name":"Pesquisa Operacional","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE NP-HARDNESS OF THE MINIMUM DISPERSION ROUTING PROBLEM\",\"authors\":\"Guilherme Dhein, Marcelo Serrano Zanetti, Olinto César Bassi de Araújo\",\"doi\":\"10.1590/0101-7438.2023.043.00270974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Minimum Dispersion Routing Problem, a set of vertices must be served by tours with trajectories defined in order to reduce the dispersion of vehicles. Tours must be related to each other and impose a spatial and temporal synchronization among vehicles, quantified by an original dispersion metric used in an objective function to be minimized. In this paper, we demonstrate that Euclidean Traveling Salesman Problem solutions can be found by MDRP solvers. We describe a method to reduce Euclidean Traveling Salesman Problem instances to Minimum Dispersion Routing Problem instances in polynomial time, proving that the last one is NP-Hard.\",\"PeriodicalId\":35341,\"journal\":{\"name\":\"Pesquisa Operacional\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesquisa Operacional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0101-7438.2023.043.00270974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquisa Operacional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0101-7438.2023.043.00270974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在最小分散路径问题中,为了减少车辆的分散,必须由具有定义轨迹的行程服务于一组顶点。旅行必须相互关联,并在车辆之间施加空间和时间同步,由目标函数中使用的原始分散度量来量化。本文证明了用MDRP求解器可以找到欧氏旅行商问题的解。描述了一种在多项式时间内将欧氏旅行商问题实例简化为最小离散路由问题实例的方法,证明了最后一种方法是np困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE NP-HARDNESS OF THE MINIMUM DISPERSION ROUTING PROBLEM
In the Minimum Dispersion Routing Problem, a set of vertices must be served by tours with trajectories defined in order to reduce the dispersion of vehicles. Tours must be related to each other and impose a spatial and temporal synchronization among vehicles, quantified by an original dispersion metric used in an objective function to be minimized. In this paper, we demonstrate that Euclidean Traveling Salesman Problem solutions can be found by MDRP solvers. We describe a method to reduce Euclidean Traveling Salesman Problem instances to Minimum Dispersion Routing Problem instances in polynomial time, proving that the last one is NP-Hard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pesquisa Operacional
Pesquisa Operacional Decision Sciences-Management Science and Operations Research
CiteScore
1.60
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊介绍: Pesquisa Operacional is published each semester by the Sociedade Brasileira de Pesquisa Operacional - SOBRAPO, performing one volume per year, and is distributed free of charge to its associates. The abbreviated title of the journal is Pesq. Oper., which should be used in bibliographies, footnotes and bibliographical references and strips.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信