基于改进ExpectedMode增强算法的机动星凸扩展目标跟踪

IF 0.9 Q3 ENGINEERING, AEROSPACE
Jinjin Zhang, Lifan Sun, Dan Gao
{"title":"基于改进ExpectedMode增强算法的机动星凸扩展目标跟踪","authors":"Jinjin Zhang, Lifan Sun, Dan Gao","doi":"10.1590/jatm.v15.1314","DOIUrl":null,"url":null,"abstract":"In utilizing a variable-structure multiple-model (VSMM) algorithm for kinematic state estimation, the core step is the model set design. This study aims to refine the existing expected-mode augmentation (EMA) algorithm, a method of model set design. First, the OTSU algorithm is employed to determine an adaptive threshold, which in turn allows for a reasonable partition of the basic model set. Next, a subset of possible models is preserved, reactivating models adjacent to the one with the highest prediction probability, eliminating improbable models, and yielding an augmented expected mode. Additionally, the study leverages the translation properties of radial functions and inverse trigonometric function formulas to derive a maneuvering model for star-convex extended targets under uniformly accelerated conditions. In order to assess the effectiveness of the proposed algorithm and the validity of the established maneuvering model, simulation experiments were carried out in both fixed and random scenarios. The proposed algorithm demonstrates improved performance when compared to the interactive multiple-model algorithm and the unmodified EMA algorithm.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":"18 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maneuvering Star-Convex Extended Target Tracking Based on Modified ExpectedMode Augmentation Algorithm\",\"authors\":\"Jinjin Zhang, Lifan Sun, Dan Gao\",\"doi\":\"10.1590/jatm.v15.1314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In utilizing a variable-structure multiple-model (VSMM) algorithm for kinematic state estimation, the core step is the model set design. This study aims to refine the existing expected-mode augmentation (EMA) algorithm, a method of model set design. First, the OTSU algorithm is employed to determine an adaptive threshold, which in turn allows for a reasonable partition of the basic model set. Next, a subset of possible models is preserved, reactivating models adjacent to the one with the highest prediction probability, eliminating improbable models, and yielding an augmented expected mode. Additionally, the study leverages the translation properties of radial functions and inverse trigonometric function formulas to derive a maneuvering model for star-convex extended targets under uniformly accelerated conditions. In order to assess the effectiveness of the proposed algorithm and the validity of the established maneuvering model, simulation experiments were carried out in both fixed and random scenarios. The proposed algorithm demonstrates improved performance when compared to the interactive multiple-model algorithm and the unmodified EMA algorithm.\",\"PeriodicalId\":14872,\"journal\":{\"name\":\"Journal of Aerospace Technology and Management\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Technology and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/jatm.v15.1314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/jatm.v15.1314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

利用变结构多模型(VSMM)算法进行运动状态估计,其核心步骤是模型集设计。本研究旨在改进现有的期望模态增强(EMA)算法,这是一种模型集设计方法。首先,采用OTSU算法确定自适应阈值,从而对基本模型集进行合理划分。接下来,保留可能模型的子集,重新激活与预测概率最高的模型相邻的模型,消除不可能的模型,并产生增强的期望模型。此外,利用径向函数的平移特性和反三角函数公式,推导出均匀加速条件下星凸扩展目标的机动模型。为了评估所提算法的有效性和所建立机动模型的有效性,分别在固定场景和随机场景下进行了仿真实验。与交互式多模型算法和未修改的EMA算法相比,该算法的性能得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maneuvering Star-Convex Extended Target Tracking Based on Modified ExpectedMode Augmentation Algorithm
In utilizing a variable-structure multiple-model (VSMM) algorithm for kinematic state estimation, the core step is the model set design. This study aims to refine the existing expected-mode augmentation (EMA) algorithm, a method of model set design. First, the OTSU algorithm is employed to determine an adaptive threshold, which in turn allows for a reasonable partition of the basic model set. Next, a subset of possible models is preserved, reactivating models adjacent to the one with the highest prediction probability, eliminating improbable models, and yielding an augmented expected mode. Additionally, the study leverages the translation properties of radial functions and inverse trigonometric function formulas to derive a maneuvering model for star-convex extended targets under uniformly accelerated conditions. In order to assess the effectiveness of the proposed algorithm and the validity of the established maneuvering model, simulation experiments were carried out in both fixed and random scenarios. The proposed algorithm demonstrates improved performance when compared to the interactive multiple-model algorithm and the unmodified EMA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
16
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信