Vanterler da C. Sousa, D.S. Oliveira, Ravi Agarwal
{"title":"具有γ(ξ)-拉普拉斯方程和Nehari流形的分数阶Dirichlet问题的存在性和多重性","authors":"Vanterler da C. Sousa, D.S. Oliveira, Ravi Agarwal","doi":"10.2298/aadm220903017s","DOIUrl":null,"url":null,"abstract":"This paper is divided in two parts. In the first part, we prove coercivity results and minimization of the Euler energy functional. In the second part, we focus on the existence and multiplicity of a positive solution of fractional Dirichlet problem involving the ?(?)-Laplacian equation with non-negative weight functions in H?,?;? ?(?) (?,R) using some variational techniques and Nehari manifold.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"33 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and multiplicity for fractional Dirichlet problem with γ(ξ)-Laplacian equation and Nehari manifold\",\"authors\":\"Vanterler da C. Sousa, D.S. Oliveira, Ravi Agarwal\",\"doi\":\"10.2298/aadm220903017s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is divided in two parts. In the first part, we prove coercivity results and minimization of the Euler energy functional. In the second part, we focus on the existence and multiplicity of a positive solution of fractional Dirichlet problem involving the ?(?)-Laplacian equation with non-negative weight functions in H?,?;? ?(?) (?,R) using some variational techniques and Nehari manifold.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm220903017s\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/aadm220903017s","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence and multiplicity for fractional Dirichlet problem with γ(ξ)-Laplacian equation and Nehari manifold
This paper is divided in two parts. In the first part, we prove coercivity results and minimization of the Euler energy functional. In the second part, we focus on the existence and multiplicity of a positive solution of fractional Dirichlet problem involving the ?(?)-Laplacian equation with non-negative weight functions in H?,?;? ?(?) (?,R) using some variational techniques and Nehari manifold.
期刊介绍:
Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).