具有γ(ξ)-拉普拉斯方程和Nehari流形的分数阶Dirichlet问题的存在性和多重性

IF 1 4区 数学 Q1 MATHEMATICS
Vanterler da C. Sousa, D.S. Oliveira, Ravi Agarwal
{"title":"具有γ(ξ)-拉普拉斯方程和Nehari流形的分数阶Dirichlet问题的存在性和多重性","authors":"Vanterler da C. Sousa, D.S. Oliveira, Ravi Agarwal","doi":"10.2298/aadm220903017s","DOIUrl":null,"url":null,"abstract":"This paper is divided in two parts. In the first part, we prove coercivity results and minimization of the Euler energy functional. In the second part, we focus on the existence and multiplicity of a positive solution of fractional Dirichlet problem involving the ?(?)-Laplacian equation with non-negative weight functions in H?,?;? ?(?) (?,R) using some variational techniques and Nehari manifold.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and multiplicity for fractional Dirichlet problem with γ(ξ)-Laplacian equation and Nehari manifold\",\"authors\":\"Vanterler da C. Sousa, D.S. Oliveira, Ravi Agarwal\",\"doi\":\"10.2298/aadm220903017s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is divided in two parts. In the first part, we prove coercivity results and minimization of the Euler energy functional. In the second part, we focus on the existence and multiplicity of a positive solution of fractional Dirichlet problem involving the ?(?)-Laplacian equation with non-negative weight functions in H?,?;? ?(?) (?,R) using some variational techniques and Nehari manifold.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm220903017s\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/aadm220903017s","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分为两部分。在第一部分中,我们证明了欧拉能量泛函的矫顽力结果和最小化。在第二部分中,我们重点讨论了在H?,?;;;;(?) (?,R)利用一些变分技术和Nehari流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and multiplicity for fractional Dirichlet problem with γ(ξ)-Laplacian equation and Nehari manifold
This paper is divided in two parts. In the first part, we prove coercivity results and minimization of the Euler energy functional. In the second part, we focus on the existence and multiplicity of a positive solution of fractional Dirichlet problem involving the ?(?)-Laplacian equation with non-negative weight functions in H?,?;? ?(?) (?,R) using some variational techniques and Nehari manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信