fink恒等式在高阶凸函数jensen型不等式中的应用

IF 1 4区 数学 Q1 MATHEMATICS
Marija Bosnjak, Mario Krnic, Josip Pecaric
{"title":"fink恒等式在高阶凸函数jensen型不等式中的应用","authors":"Marija Bosnjak, Mario Krnic, Josip Pecaric","doi":"10.2298/aadm230210018b","DOIUrl":null,"url":null,"abstract":"The focus of this paper is the application of the Fink identity in obtaining Jensen-type inequalities for higher order convex functions. In addition to the basic form, we establish superadditivity and monotonicity relations that correspond to the Jensen inequality in this setting. We also obtain the corresponding Lah-Ribaric inequality. The obtained results are valid for functions of even degree of convexity. With this method, we derive some new bounds for the differences of power means, as well as some new H?lder-type inequalities","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"138 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the fink identity to Jensen-type inequalities for higher order convex functions\",\"authors\":\"Marija Bosnjak, Mario Krnic, Josip Pecaric\",\"doi\":\"10.2298/aadm230210018b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this paper is the application of the Fink identity in obtaining Jensen-type inequalities for higher order convex functions. In addition to the basic form, we establish superadditivity and monotonicity relations that correspond to the Jensen inequality in this setting. We also obtain the corresponding Lah-Ribaric inequality. The obtained results are valid for functions of even degree of convexity. With this method, we derive some new bounds for the differences of power means, as well as some new H?lder-type inequalities\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm230210018b\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/aadm230210018b","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文重点讨论了Fink恒等式在求解高阶凸函数jensen型不等式中的应用。除了基本形式外,我们还建立了与詹森不等式对应的超加性和单调性关系。我们也得到了相应的la - ribaric不等式。所得结果对偶凸度函数是有效的。利用这种方法,我们得到了幂均值之差的一些新的界,以及一些新的H?lder-type不平等
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the fink identity to Jensen-type inequalities for higher order convex functions
The focus of this paper is the application of the Fink identity in obtaining Jensen-type inequalities for higher order convex functions. In addition to the basic form, we establish superadditivity and monotonicity relations that correspond to the Jensen inequality in this setting. We also obtain the corresponding Lah-Ribaric inequality. The obtained results are valid for functions of even degree of convexity. With this method, we derive some new bounds for the differences of power means, as well as some new H?lder-type inequalities
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信