高维回归模型的统计推断与大规模多元检验

Cai, T. Tony, Guo, Zijian, Xia, Yin
{"title":"高维回归模型的统计推断与大规模多元检验","authors":"Cai, T. Tony, Guo, Zijian, Xia, Yin","doi":"10.48550/arxiv.2301.10392","DOIUrl":null,"url":null,"abstract":"This paper presents a selective survey of recent developments in statistical inference and multiple testing for high-dimensional regression models, including linear and logistic regression. We examine the construction of confidence intervals and hypothesis tests for various low-dimensional objectives such as regression coefficients and linear and quadratic functionals. The key technique is to generate debiased and desparsified estimators for the targeted low-dimensional objectives and estimate their uncertainty. In addition to covering the motivations for and intuitions behind these statistical methods, we also discuss their optimality and adaptivity in the context of high-dimensional inference. In addition, we review the recent development of statistical inference based on multiple regression models and the advancement of large-scale multiple testing for high-dimensional regression. The R package SIHR has implemented some of the high-dimensional inference methods discussed in this paper.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Inference and Large-scale Multiple Testing for\\n High-dimensional Regression Models\",\"authors\":\"Cai, T. Tony, Guo, Zijian, Xia, Yin\",\"doi\":\"10.48550/arxiv.2301.10392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a selective survey of recent developments in statistical inference and multiple testing for high-dimensional regression models, including linear and logistic regression. We examine the construction of confidence intervals and hypothesis tests for various low-dimensional objectives such as regression coefficients and linear and quadratic functionals. The key technique is to generate debiased and desparsified estimators for the targeted low-dimensional objectives and estimate their uncertainty. In addition to covering the motivations for and intuitions behind these statistical methods, we also discuss their optimality and adaptivity in the context of high-dimensional inference. In addition, we review the recent development of statistical inference based on multiple regression models and the advancement of large-scale multiple testing for high-dimensional regression. The R package SIHR has implemented some of the high-dimensional inference methods discussed in this paper.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2301.10392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2301.10392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了高维回归模型(包括线性和逻辑回归)的统计推断和多重检验的最新发展的选择性调查。我们研究了各种低维目标(如回归系数、线性和二次函数)的置信区间和假设检验的构造。其关键技术是对目标低维目标生成去偏和去杂化的估计量,并估计其不确定性。除了涵盖这些统计方法背后的动机和直觉之外,我们还讨论了它们在高维推理背景下的最优性和适应性。此外,综述了基于多元回归模型的统计推断的最新进展,以及高维回归的大规模多元检验的进展。R包SIHR已经实现了本文讨论的一些高维推理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Inference and Large-scale Multiple Testing for High-dimensional Regression Models
This paper presents a selective survey of recent developments in statistical inference and multiple testing for high-dimensional regression models, including linear and logistic regression. We examine the construction of confidence intervals and hypothesis tests for various low-dimensional objectives such as regression coefficients and linear and quadratic functionals. The key technique is to generate debiased and desparsified estimators for the targeted low-dimensional objectives and estimate their uncertainty. In addition to covering the motivations for and intuitions behind these statistical methods, we also discuss their optimality and adaptivity in the context of high-dimensional inference. In addition, we review the recent development of statistical inference based on multiple regression models and the advancement of large-scale multiple testing for high-dimensional regression. The R package SIHR has implemented some of the high-dimensional inference methods discussed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信