基于最优机器学习算法的锂离子电池分类与检测

None Vineetha . K, None S. Vilma Veronica, None S. Hemalatha, None G. Suresh
{"title":"基于最优机器学习算法的锂离子电池分类与检测","authors":"None Vineetha . K, None S. Vilma Veronica, None S. Hemalatha, None G. Suresh","doi":"10.32628/ijsrset2310538","DOIUrl":null,"url":null,"abstract":"In today's civilization, lithium-ion batteries (LIBs) are essential energy storage technologies. In terms of energy density, power density, cycle life, safety, etc., the performance and cost are still unsatisfactory. Traditional \"trial-and-error\" procedures necessitate a large number of time-consuming trials to further enhance battery performance. The End-of-life (EOL) LIBs come in a variety of shapes and sizes, which makes it difficult to automate a few unit processes (such cell-level disassembly) of the recycling process. Meanwhile, LIBs contain dangerous and combustible components, posing serious risks to human exposure. In this paper, we anticipate the various crystal system types based on the system's LIB using an optimal machine learning (OML) approach.","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium-Ion Battery Classification and Detection Using an Optimal Machine Learning Algorithm\",\"authors\":\"None Vineetha . K, None S. Vilma Veronica, None S. Hemalatha, None G. Suresh\",\"doi\":\"10.32628/ijsrset2310538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's civilization, lithium-ion batteries (LIBs) are essential energy storage technologies. In terms of energy density, power density, cycle life, safety, etc., the performance and cost are still unsatisfactory. Traditional \\\"trial-and-error\\\" procedures necessitate a large number of time-consuming trials to further enhance battery performance. The End-of-life (EOL) LIBs come in a variety of shapes and sizes, which makes it difficult to automate a few unit processes (such cell-level disassembly) of the recycling process. Meanwhile, LIBs contain dangerous and combustible components, posing serious risks to human exposure. In this paper, we anticipate the various crystal system types based on the system's LIB using an optimal machine learning (OML) approach.\",\"PeriodicalId\":14228,\"journal\":{\"name\":\"International Journal of Scientific Research in Science, Engineering and Technology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Science, Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/ijsrset2310538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrset2310538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今的文明中,锂离子电池(LIBs)是必不可少的储能技术。在能量密度、功率密度、循环寿命、安全性等方面,性能和成本仍不尽人意。传统的“试错”程序需要大量耗时的试验来进一步提高电池性能。报废(EOL) lib有各种形状和大小,这使得回收过程中的一些单元过程(如细胞级拆卸)难以自动化。同时,lib含有危险和可燃成分,对人体暴露构成严重风险。在本文中,我们使用最优机器学习(OML)方法预测了基于系统LIB的各种晶体系统类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithium-Ion Battery Classification and Detection Using an Optimal Machine Learning Algorithm
In today's civilization, lithium-ion batteries (LIBs) are essential energy storage technologies. In terms of energy density, power density, cycle life, safety, etc., the performance and cost are still unsatisfactory. Traditional "trial-and-error" procedures necessitate a large number of time-consuming trials to further enhance battery performance. The End-of-life (EOL) LIBs come in a variety of shapes and sizes, which makes it difficult to automate a few unit processes (such cell-level disassembly) of the recycling process. Meanwhile, LIBs contain dangerous and combustible components, posing serious risks to human exposure. In this paper, we anticipate the various crystal system types based on the system's LIB using an optimal machine learning (OML) approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信