{"title":"生物样品中儿茶酚残留染色新技术。","authors":"R Kalyani, K Nellaiappan","doi":"10.3109/10520298909108038","DOIUrl":null,"url":null,"abstract":"<p><p>This technique for localizing catecholic residues in biological samples is based on the condensation of Besthorn's hydrazone (3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) with quinone residues obtained by the oxidation of catechols in the presence of ammonia. The product is a dark pink MBTH-quinone compound. This method is very sensitive and positive to catechol even at the 0.05 microgram level and the final product is chemically stable.</p>","PeriodicalId":21924,"journal":{"name":"Stain technology","volume":"64 1","pages":"15-8"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10520298909108038","citationCount":"1","resultStr":"{\"title\":\"A new technique for staining catecholic residues in biological samples.\",\"authors\":\"R Kalyani, K Nellaiappan\",\"doi\":\"10.3109/10520298909108038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This technique for localizing catecholic residues in biological samples is based on the condensation of Besthorn's hydrazone (3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) with quinone residues obtained by the oxidation of catechols in the presence of ammonia. The product is a dark pink MBTH-quinone compound. This method is very sensitive and positive to catechol even at the 0.05 microgram level and the final product is chemically stable.</p>\",\"PeriodicalId\":21924,\"journal\":{\"name\":\"Stain technology\",\"volume\":\"64 1\",\"pages\":\"15-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10520298909108038\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stain technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10520298909108038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stain technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10520298909108038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new technique for staining catecholic residues in biological samples.
This technique for localizing catecholic residues in biological samples is based on the condensation of Besthorn's hydrazone (3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) with quinone residues obtained by the oxidation of catechols in the presence of ammonia. The product is a dark pink MBTH-quinone compound. This method is very sensitive and positive to catechol even at the 0.05 microgram level and the final product is chemically stable.