基于人工智能的肺纤维化HRCT分层决策支持一项对来自37个国家的116名观察员进行的国际研究。

IF 0.7 Q3 MEDICINE, GENERAL & INTERNAL
Lucio Calandriello, John Mackintosh, Federico Felder, Aditya Agrawal, Omer Alamoudi, Laura Alberti, Giuseppe Aquaro, Juan Arenas-Jiménez, Iain Au-Yong, Sergey Avdeev, Maurizio Balbi, Bruno Baldi, Andrea Yu-Lin Ban, Ionela-Nicoleta Belaconi, Elisabeth Bendstrup, David Bennett, Hans-Christian Blum, Nicola Boscolo Bariga, Gracijela Bozovic, Marsel Broqi, John Bruzzi, Ivette Buendia-Roldan, Diana Calaras, Sérgio Campainha, Roberto G. Carbone, André Carvalho, Lorenzo Cereser, Gin Tsen Chai, Sachin Chaudhary, Nazia Chaudhuri, Patrick Alain Chui Wan Cheong, Wendy Cooper, Giuseppe Cutaia, Rosa D'Abronzo, Martijn D. De Kruif, Diemen Delgado-García, Sahajal Dhooria, Jesus J Diaz-Castanon, Glenn Eiger, Samantha Ellis, Rosa Estrada-Y-Martin, Yingying Fang
{"title":"基于人工智能的肺纤维化HRCT分层决策支持一项对来自37个国家的116名观察员进行的国际研究。","authors":"Lucio Calandriello, John Mackintosh, Federico Felder, Aditya Agrawal, Omer Alamoudi, Laura Alberti, Giuseppe Aquaro, Juan Arenas-Jiménez, Iain Au-Yong, Sergey Avdeev, Maurizio Balbi, Bruno Baldi, Andrea Yu-Lin Ban, Ionela-Nicoleta Belaconi, Elisabeth Bendstrup, David Bennett, Hans-Christian Blum, Nicola Boscolo Bariga, Gracijela Bozovic, Marsel Broqi, John Bruzzi, Ivette Buendia-Roldan, Diana Calaras, Sérgio Campainha, Roberto G. Carbone, André Carvalho, Lorenzo Cereser, Gin Tsen Chai, Sachin Chaudhary, Nazia Chaudhuri, Patrick Alain Chui Wan Cheong, Wendy Cooper, Giuseppe Cutaia, Rosa D'Abronzo, Martijn D. De Kruif, Diemen Delgado-García, Sahajal Dhooria, Jesus J Diaz-Castanon, Glenn Eiger, Samantha Ellis, Rosa Estrada-Y-Martin, Yingying Fang","doi":"10.1183/13993003.congress-2023.oa4848","DOIUrl":null,"url":null,"abstract":"<b>Methods:</b> We evaluated a deep learning algorithm (DL), for classifying HRCT based on ATS/ERS/JRS/ALAT IPF guideline criteria (SOFIA), among an international group of radiologists and pulmonologists. Participants evaluated HRCTs from 203 suspected IPF patients, assigning a likelihood score for each of the guideline-based HRCT categories (each 0-100%, summing to 100%). SOFIA scores were then provided, and participants were given the opportunity to revise their scores. Agreement on (weighted kappa) and prognostic accuracy (Cox regression and C-index) of 1) UIP scores, 2) guideline-based diagnosis and 3) INBUILD categorisation (UIP/probable UIP vs indeterminate/alternative diagnosis – i.e., trial screening mode) were evaluated. <b>Results:</b> 116 participants completed the study, including 20 ILD trained radiologists. The majority opinion of ILD radiologists on each HRCT was used as a diagnostic reference standard. SOFIA improved agreement for UIP probability scores among all participants, excluding the ILD radiologists, (0.67 [IQR 0.57-0.73] vs 0.71 [IQR, 0.65-0.76], p=2.1x10-5) and guideline-based diagnoses (0.50 [IQR 0.43-0.54] vs 0.61 [IQR, 0.56-0.66], p=2.8x10-16) and INBUILD categorisation (0.42 [IQR 0.35-0.47] vs 0.56 [IQR, 0.49-0.62], p=7.1x10-19).&nbsp; Prognostic accuracy for UIP probability scores (mortality) were good for radiologist scoring (n=116, C-index=0.60 [IQR 0.58-0.62]), and these improved with the addition of SOFIA (C-index=0.63 [IQR 0.61-0.65], p=3.6x10-12). <b>Conclusion:</b> In pulmonary fibrosis, DL support may improve accuracy of HRCT diagnoses, provide prognostic information and faciliate screening in clinical trials.","PeriodicalId":34850,"journal":{"name":"Imaging","volume":"38 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late Breaking Abstract - Artificial intelligence-based dec­­­ision support for HRCT stratification in fibrotic lung disease; an international study of 116 observers from 37 countries.\",\"authors\":\"Lucio Calandriello, John Mackintosh, Federico Felder, Aditya Agrawal, Omer Alamoudi, Laura Alberti, Giuseppe Aquaro, Juan Arenas-Jiménez, Iain Au-Yong, Sergey Avdeev, Maurizio Balbi, Bruno Baldi, Andrea Yu-Lin Ban, Ionela-Nicoleta Belaconi, Elisabeth Bendstrup, David Bennett, Hans-Christian Blum, Nicola Boscolo Bariga, Gracijela Bozovic, Marsel Broqi, John Bruzzi, Ivette Buendia-Roldan, Diana Calaras, Sérgio Campainha, Roberto G. Carbone, André Carvalho, Lorenzo Cereser, Gin Tsen Chai, Sachin Chaudhary, Nazia Chaudhuri, Patrick Alain Chui Wan Cheong, Wendy Cooper, Giuseppe Cutaia, Rosa D'Abronzo, Martijn D. De Kruif, Diemen Delgado-García, Sahajal Dhooria, Jesus J Diaz-Castanon, Glenn Eiger, Samantha Ellis, Rosa Estrada-Y-Martin, Yingying Fang\",\"doi\":\"10.1183/13993003.congress-2023.oa4848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<b>Methods:</b> We evaluated a deep learning algorithm (DL), for classifying HRCT based on ATS/ERS/JRS/ALAT IPF guideline criteria (SOFIA), among an international group of radiologists and pulmonologists. Participants evaluated HRCTs from 203 suspected IPF patients, assigning a likelihood score for each of the guideline-based HRCT categories (each 0-100%, summing to 100%). SOFIA scores were then provided, and participants were given the opportunity to revise their scores. Agreement on (weighted kappa) and prognostic accuracy (Cox regression and C-index) of 1) UIP scores, 2) guideline-based diagnosis and 3) INBUILD categorisation (UIP/probable UIP vs indeterminate/alternative diagnosis – i.e., trial screening mode) were evaluated. <b>Results:</b> 116 participants completed the study, including 20 ILD trained radiologists. The majority opinion of ILD radiologists on each HRCT was used as a diagnostic reference standard. SOFIA improved agreement for UIP probability scores among all participants, excluding the ILD radiologists, (0.67 [IQR 0.57-0.73] vs 0.71 [IQR, 0.65-0.76], p=2.1x10-5) and guideline-based diagnoses (0.50 [IQR 0.43-0.54] vs 0.61 [IQR, 0.56-0.66], p=2.8x10-16) and INBUILD categorisation (0.42 [IQR 0.35-0.47] vs 0.56 [IQR, 0.49-0.62], p=7.1x10-19).&nbsp; Prognostic accuracy for UIP probability scores (mortality) were good for radiologist scoring (n=116, C-index=0.60 [IQR 0.58-0.62]), and these improved with the addition of SOFIA (C-index=0.63 [IQR 0.61-0.65], p=3.6x10-12). <b>Conclusion:</b> In pulmonary fibrosis, DL support may improve accuracy of HRCT diagnoses, provide prognostic information and faciliate screening in clinical trials.\",\"PeriodicalId\":34850,\"journal\":{\"name\":\"Imaging\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1183/13993003.congress-2023.oa4848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1183/13993003.congress-2023.oa4848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

方法:我们评估了一种深度学习算法(DL),该算法基于ATS/ERS/JRS/ALAT IPF指南标准(SOFIA)对HRCT进行分类。参与者评估203名疑似IPF患者的HRCT,为每个基于指南的HRCT分类分配可能性评分(每个0-100%,总和为100%)。然后提供SOFIA分数,参与者有机会修改他们的分数。评估1)UIP评分、2)基于指南的诊断和3)INBUILD分类(UIP/可能的UIP vs不确定/替代诊断-即试验筛选模式)的(加权kappa)和预后准确性(Cox回归和c指数)的一致性。结果:116名参与者完成了研究,其中包括20名ILD培训的放射科医生。每个HRCT上ILD放射科医生的多数意见被用作诊断参考标准。SOFIA提高了所有参与者(不包括ILD放射科医生)对UIP概率评分的一致性(0.67 [IQR 0.57-0.73] vs 0.71 [IQR, 0.65-0.76], p=2.1x10-5)和基于指南的诊断(0.50 [IQR 0.43-0.54] vs 0.61 [IQR, 0.56-0.66], p= 2.7 x10-16)和INBUILD分类(0.42 [IQR 0.35-0.47] vs 0.56 [IQR, 0.49-0.62], p=7.1x10-19)。放射科医生评分的UIP概率评分(死亡率)的预后准确性较好(n=116, C-index=0.60 [IQR 0.58-0.62]),并且随着SOFIA的加入而提高(C-index=0.63 [IQR 0.61-0.65], p=3.6x10-12)。结论:在肺纤维化中,DL支持可提高HRCT诊断的准确性,提供预后信息,促进临床试验的筛查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Late Breaking Abstract - Artificial intelligence-based dec­­­ision support for HRCT stratification in fibrotic lung disease; an international study of 116 observers from 37 countries.
Methods: We evaluated a deep learning algorithm (DL), for classifying HRCT based on ATS/ERS/JRS/ALAT IPF guideline criteria (SOFIA), among an international group of radiologists and pulmonologists. Participants evaluated HRCTs from 203 suspected IPF patients, assigning a likelihood score for each of the guideline-based HRCT categories (each 0-100%, summing to 100%). SOFIA scores were then provided, and participants were given the opportunity to revise their scores. Agreement on (weighted kappa) and prognostic accuracy (Cox regression and C-index) of 1) UIP scores, 2) guideline-based diagnosis and 3) INBUILD categorisation (UIP/probable UIP vs indeterminate/alternative diagnosis – i.e., trial screening mode) were evaluated. Results: 116 participants completed the study, including 20 ILD trained radiologists. The majority opinion of ILD radiologists on each HRCT was used as a diagnostic reference standard. SOFIA improved agreement for UIP probability scores among all participants, excluding the ILD radiologists, (0.67 [IQR 0.57-0.73] vs 0.71 [IQR, 0.65-0.76], p=2.1x10-5) and guideline-based diagnoses (0.50 [IQR 0.43-0.54] vs 0.61 [IQR, 0.56-0.66], p=2.8x10-16) and INBUILD categorisation (0.42 [IQR 0.35-0.47] vs 0.56 [IQR, 0.49-0.62], p=7.1x10-19).  Prognostic accuracy for UIP probability scores (mortality) were good for radiologist scoring (n=116, C-index=0.60 [IQR 0.58-0.62]), and these improved with the addition of SOFIA (C-index=0.63 [IQR 0.61-0.65], p=3.6x10-12). Conclusion: In pulmonary fibrosis, DL support may improve accuracy of HRCT diagnoses, provide prognostic information and faciliate screening in clinical trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Imaging
Imaging MEDICINE, GENERAL & INTERNAL-
CiteScore
0.70
自引率
25.00%
发文量
6
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信