基于主动MDP学习的概率黑盒检验

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Junya Shijubo, Masaki Waga, Kohei Suenaga
{"title":"基于主动MDP学习的概率黑盒检验","authors":"Junya Shijubo, Masaki Waga, Kohei Suenaga","doi":"10.1145/3609127","DOIUrl":null,"url":null,"abstract":"We introduce a novel methodology for testing stochastic black-box systems, frequently encountered in embedded systems. Our approach enhances the established black-box checking (BBC) technique to address stochastic behavior. Traditional BBC primarily involves iteratively identifying an input that breaches the system’s specifications by executing the following three phases: the learning phase to construct an automaton approximating the black box’s behavior, the synthesis phase to identify a candidate counterexample from the learned automaton, and the validation phase to validate the obtained candidate counterexample and the learned automaton against the original black-box system. Our method, ProbBBC, refines the conventional BBC approach by (1) employing an active Markov Decision Process (MDP) learning method during the learning phase, (2) incorporating probabilistic model checking in the synthesis phase, and (3) applying statistical hypothesis testing in the validation phase. ProbBBC uniquely integrates these techniques rather than merely substituting each method in the traditional BBC; for instance, the statistical hypothesis testing and the MDP learning procedure exchange information regarding the black-box system’s observation with one another. The experiment results suggest that ProbBBC outperforms an existing method, especially for systems with limited observation.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Black-Box Checking via Active MDP Learning\",\"authors\":\"Junya Shijubo, Masaki Waga, Kohei Suenaga\",\"doi\":\"10.1145/3609127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel methodology for testing stochastic black-box systems, frequently encountered in embedded systems. Our approach enhances the established black-box checking (BBC) technique to address stochastic behavior. Traditional BBC primarily involves iteratively identifying an input that breaches the system’s specifications by executing the following three phases: the learning phase to construct an automaton approximating the black box’s behavior, the synthesis phase to identify a candidate counterexample from the learned automaton, and the validation phase to validate the obtained candidate counterexample and the learned automaton against the original black-box system. Our method, ProbBBC, refines the conventional BBC approach by (1) employing an active Markov Decision Process (MDP) learning method during the learning phase, (2) incorporating probabilistic model checking in the synthesis phase, and (3) applying statistical hypothesis testing in the validation phase. ProbBBC uniquely integrates these techniques rather than merely substituting each method in the traditional BBC; for instance, the statistical hypothesis testing and the MDP learning procedure exchange information regarding the black-box system’s observation with one another. The experiment results suggest that ProbBBC outperforms an existing method, especially for systems with limited observation.\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609127\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609127","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种新的方法来测试随机黑盒系统,经常在嵌入式系统中遇到。我们的方法增强了既定的黑盒检查(BBC)技术来解决随机行为。传统的BBC主要涉及通过执行以下三个阶段来迭代地识别违反系统规范的输入:学习阶段,构建一个近似黑箱行为的自动机;综合阶段,从学习的自动机中识别候选反例;验证阶段,根据原始黑箱系统验证获得的候选反例和学习的自动机。我们的方法ProbBBC通过(1)在学习阶段采用主动马尔可夫决策过程(MDP)学习方法来改进传统的BBC方法,(2)在综合阶段结合概率模型检查,(3)在验证阶段应用统计假设检验。ProbBBC独特地整合了这些技术,而不仅仅是取代传统BBC中的每种方法;例如,统计假设检验和MDP学习过程相互交换关于黑箱系统观察的信息。实验结果表明,ProbBBC优于现有的方法,特别是对于有限观测的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Black-Box Checking via Active MDP Learning
We introduce a novel methodology for testing stochastic black-box systems, frequently encountered in embedded systems. Our approach enhances the established black-box checking (BBC) technique to address stochastic behavior. Traditional BBC primarily involves iteratively identifying an input that breaches the system’s specifications by executing the following three phases: the learning phase to construct an automaton approximating the black box’s behavior, the synthesis phase to identify a candidate counterexample from the learned automaton, and the validation phase to validate the obtained candidate counterexample and the learned automaton against the original black-box system. Our method, ProbBBC, refines the conventional BBC approach by (1) employing an active Markov Decision Process (MDP) learning method during the learning phase, (2) incorporating probabilistic model checking in the synthesis phase, and (3) applying statistical hypothesis testing in the validation phase. ProbBBC uniquely integrates these techniques rather than merely substituting each method in the traditional BBC; for instance, the statistical hypothesis testing and the MDP learning procedure exchange information regarding the black-box system’s observation with one another. The experiment results suggest that ProbBBC outperforms an existing method, especially for systems with limited observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
138
审稿时长
6 months
期刊介绍: The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信