非自治波动方程完全离散化的最大范数误差界

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Benjamin Dörich, Jan Leibold, Bernhard Maier
{"title":"非自治波动方程完全离散化的最大范数误差界","authors":"Benjamin Dörich, Jan Leibold, Bernhard Maier","doi":"10.1093/imanum/drad065","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, we consider a specific class of nonautonomous wave equations on a smooth, bounded domain and their discretization in space by isoparametric finite elements and in time by the implicit Euler method. Building upon the work of Baker and Dougalis (1980, On the ${L}^{\\infty }$-convergence of Galerkin approximations for second-order hyperbolic equations. Math. Comp., 34, 401–424), we prove optimal error bounds in the $W^{1,\\infty } \\times L^\\infty $-norm for the semidiscretization in space and the full discretization. The key tool is the gain of integrability coming from the inverse of the discretized differential operator. For this, we have to pay with (discrete) time derivatives on the error in the $H^{1} \\times L^2$-norm, which are reduced to estimates of the differentiated initial errors. To confirm our theoretical findings, we also present numerical experiments.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum norm error bounds for the full discretization of nonautonomous wave equations\",\"authors\":\"Benjamin Dörich, Jan Leibold, Bernhard Maier\",\"doi\":\"10.1093/imanum/drad065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present paper, we consider a specific class of nonautonomous wave equations on a smooth, bounded domain and their discretization in space by isoparametric finite elements and in time by the implicit Euler method. Building upon the work of Baker and Dougalis (1980, On the ${L}^{\\\\infty }$-convergence of Galerkin approximations for second-order hyperbolic equations. Math. Comp., 34, 401–424), we prove optimal error bounds in the $W^{1,\\\\infty } \\\\times L^\\\\infty $-norm for the semidiscretization in space and the full discretization. The key tool is the gain of integrability coming from the inverse of the discretized differential operator. For this, we have to pay with (discrete) time derivatives on the error in the $H^{1} \\\\times L^2$-norm, which are reduced to estimates of the differentiated initial errors. To confirm our theoretical findings, we also present numerical experiments.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad065\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究光滑有界区域上的一类特殊的非自治波动方程及其在空间上用等参有限元和时间上用隐式欧拉方法的离散化。在Baker和Dougalis(1980)关于二阶双曲方程伽辽金近似的${L}^{\infty }$ -收敛性的基础上。数学。(p., 34, 401-424),我们证明了空间半离散化和完全离散化的$W^{1,\infty } \times L^\infty $ -范数的最优误差界。关键的工具是由离散微分算子的逆得到的可积性增益。为此,我们必须对$H^{1} \times L^2$ -范数中的误差进行(离散)时间导数,将其简化为微分初始误差的估计。为了证实我们的理论发现,我们也提出了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum norm error bounds for the full discretization of nonautonomous wave equations
Abstract In the present paper, we consider a specific class of nonautonomous wave equations on a smooth, bounded domain and their discretization in space by isoparametric finite elements and in time by the implicit Euler method. Building upon the work of Baker and Dougalis (1980, On the ${L}^{\infty }$-convergence of Galerkin approximations for second-order hyperbolic equations. Math. Comp., 34, 401–424), we prove optimal error bounds in the $W^{1,\infty } \times L^\infty $-norm for the semidiscretization in space and the full discretization. The key tool is the gain of integrability coming from the inverse of the discretized differential operator. For this, we have to pay with (discrete) time derivatives on the error in the $H^{1} \times L^2$-norm, which are reduced to estimates of the differentiated initial errors. To confirm our theoretical findings, we also present numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信