具有高斯初始条件的非线性热方程的范数膨胀

IF 1.4 3区 数学 Q2 MATHEMATICS, APPLIED
Ilya Chevyrev
{"title":"具有高斯初始条件的非线性热方程的范数膨胀","authors":"Ilya Chevyrev","doi":"10.1007/s40072-023-00317-6","DOIUrl":null,"url":null,"abstract":"Abstract We consider a non-linear heat equation $$\\partial _t u = \\Delta u + B(u,Du)+P(u)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>B</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> posed on the d -dimensional torus, where P is a polynomial of degree at most 3 and B is a bilinear map that is not a total derivative. We show that, if the initial condition $$u_0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> is taken from a sequence of smooth Gaussian fields with a specified covariance, then u exhibits norm inflation with high probability. A consequence of this result is that there exists no Banach space of distributions which carries the Gaussian free field on the 3D torus and to which the DeTurck–Yang–Mills heat flow extends continuously, which complements recent well-posedness results of Cao–Chatterjee and the author with Chandra–Hairer–Shen. Another consequence is that the (deterministic) non-linear heat equation exhibits norm inflation, and is thus locally ill-posed, at every point in the Besov space $$B^{-1/2}_{\\infty ,\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> ; the space $$B^{-1/2}_{\\infty ,\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> is an endpoint since the equation is locally well-posed for $$B^{\\eta }_{\\infty ,\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mi>η</mml:mi> </mml:msubsup> </mml:math> for every $$\\eta &gt;-\\frac{1}{2}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:math> .","PeriodicalId":48569,"journal":{"name":"Stochastics and Partial Differential Equations-Analysis and Computations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Norm inflation for a non-linear heat equation with gaussian initial conditions\",\"authors\":\"Ilya Chevyrev\",\"doi\":\"10.1007/s40072-023-00317-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a non-linear heat equation $$\\\\partial _t u = \\\\Delta u + B(u,Du)+P(u)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>B</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> posed on the d -dimensional torus, where P is a polynomial of degree at most 3 and B is a bilinear map that is not a total derivative. We show that, if the initial condition $$u_0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> is taken from a sequence of smooth Gaussian fields with a specified covariance, then u exhibits norm inflation with high probability. A consequence of this result is that there exists no Banach space of distributions which carries the Gaussian free field on the 3D torus and to which the DeTurck–Yang–Mills heat flow extends continuously, which complements recent well-posedness results of Cao–Chatterjee and the author with Chandra–Hairer–Shen. Another consequence is that the (deterministic) non-linear heat equation exhibits norm inflation, and is thus locally ill-posed, at every point in the Besov space $$B^{-1/2}_{\\\\infty ,\\\\infty }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> ; the space $$B^{-1/2}_{\\\\infty ,\\\\infty }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> is an endpoint since the equation is locally well-posed for $$B^{\\\\eta }_{\\\\infty ,\\\\infty }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mi>η</mml:mi> </mml:msubsup> </mml:math> for every $$\\\\eta &gt;-\\\\frac{1}{2}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:math> .\",\"PeriodicalId\":48569,\"journal\":{\"name\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-023-00317-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Partial Differential Equations-Analysis and Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-023-00317-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

摘要

我们考虑一个非线性热方程$$\partial _t u = \Delta u + B(u,Du)+P(u)$$∂t u = Δ u + B (u, du) + P (u),其中P是一个最多3次的多项式,B是一个非全导数的双线性映射。我们证明,如果初始条件$$u_0$$ u 0取自具有指定协方差的光滑高斯场序列,则u表现出高概率的范数膨胀。该结果的一个结果是,不存在在三维环面上携带Gaussian自由场且DeTurck-Yang-Mills热流连续延伸的分布的Banach空间,这补充了cho - chatterjee和作者最近的适定性结果与Chandra-Hairer-Shen。另一个结果是(确定性)非线性热方程在Besov空间$$B^{-1/2}_{\infty ,\infty }$$ B∞,∞- 1 / 2上的每一点都表现出范数膨胀,因此是局部不适定的;空间$$B^{-1/2}_{\infty ,\infty }$$ B∞,∞- 1 / 2是一个端点,因为方程对于$$B^{\eta }_{\infty ,\infty }$$ B∞,∞η对于每个$$\eta >-\frac{1}{2}$$ η &gt是局部适定的;- 12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Norm inflation for a non-linear heat equation with gaussian initial conditions
Abstract We consider a non-linear heat equation $$\partial _t u = \Delta u + B(u,Du)+P(u)$$ t u = Δ u + B ( u , D u ) + P ( u ) posed on the d -dimensional torus, where P is a polynomial of degree at most 3 and B is a bilinear map that is not a total derivative. We show that, if the initial condition $$u_0$$ u 0 is taken from a sequence of smooth Gaussian fields with a specified covariance, then u exhibits norm inflation with high probability. A consequence of this result is that there exists no Banach space of distributions which carries the Gaussian free field on the 3D torus and to which the DeTurck–Yang–Mills heat flow extends continuously, which complements recent well-posedness results of Cao–Chatterjee and the author with Chandra–Hairer–Shen. Another consequence is that the (deterministic) non-linear heat equation exhibits norm inflation, and is thus locally ill-posed, at every point in the Besov space $$B^{-1/2}_{\infty ,\infty }$$ B , - 1 / 2 ; the space $$B^{-1/2}_{\infty ,\infty }$$ B , - 1 / 2 is an endpoint since the equation is locally well-posed for $$B^{\eta }_{\infty ,\infty }$$ B , η for every $$\eta >-\frac{1}{2}$$ η > - 1 2 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
13.30%
发文量
54
期刊介绍: Stochastics and Partial Differential Equations: Analysis and Computations publishes the highest quality articles presenting significantly new and important developments in the SPDE theory and applications. SPDE is an active interdisciplinary area at the crossroads of stochastic anaylsis, partial differential equations and scientific computing. Statistical physics, fluid dynamics, financial modeling, nonlinear filtering, super-processes, continuum physics and, recently, uncertainty quantification are important contributors to and major users of the theory and practice of SPDEs. The journal is promoting synergetic activities between the SPDE theory, applications, and related large scale computations. The journal also welcomes high quality articles in fields strongly connected to SPDE such as stochastic differential equations in infinite-dimensional state spaces or probabilistic approaches to solving deterministic PDEs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信