反事实的因果建模语义学

Pub Date : 2023-07-20 DOI:10.1016/j.apal.2023.103336
Giuliano Rosella, Jan Sprenger
{"title":"反事实的因果建模语义学","authors":"Giuliano Rosella,&nbsp;Jan Sprenger","doi":"10.1016/j.apal.2023.103336","DOIUrl":null,"url":null,"abstract":"<div><p><span>Causal Modeling Semantics (CMS, e.g., </span><span>[6]</span>, <span>[22]</span>, <span>[12]</span><span>) is a powerful framework for evaluating counterfactuals whose antecedent is a conjunction of atomic formulas. We extend CMS to an evaluation of the probability of counterfactuals with disjunctive antecedents, and more generally, to counterfactuals whose antecedent is an arbitrary Boolean combination of atomic formulas. Our main idea is to assign a probability to a counterfactual </span><figure><img></figure><span> at a causal model </span><span><math><mi>M</mi></math></span> as a weighted average of the probability of <em>C</em> in those submodels that <em>truthmake</em> <span><math><mi>A</mi><mo>∨</mo><mi>B</mi></math></span> <span>[1]</span>, <span>[3]</span>, <span>[4]</span>. The weights of the submodels are given by the inverse distance to the original model <span><math><mi>M</mi></math></span>, based on a distance metric proposed by Eva et al. <span>[2]</span>. Apart from solving a major problem in the epistemology of counterfactuals, our paper shows how work in semantics, causal inference and formal epistemology can be fruitfully combined.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal modeling semantics for counterfactuals with disjunctive antecedents\",\"authors\":\"Giuliano Rosella,&nbsp;Jan Sprenger\",\"doi\":\"10.1016/j.apal.2023.103336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Causal Modeling Semantics (CMS, e.g., </span><span>[6]</span>, <span>[22]</span>, <span>[12]</span><span>) is a powerful framework for evaluating counterfactuals whose antecedent is a conjunction of atomic formulas. We extend CMS to an evaluation of the probability of counterfactuals with disjunctive antecedents, and more generally, to counterfactuals whose antecedent is an arbitrary Boolean combination of atomic formulas. Our main idea is to assign a probability to a counterfactual </span><figure><img></figure><span> at a causal model </span><span><math><mi>M</mi></math></span> as a weighted average of the probability of <em>C</em> in those submodels that <em>truthmake</em> <span><math><mi>A</mi><mo>∨</mo><mi>B</mi></math></span> <span>[1]</span>, <span>[3]</span>, <span>[4]</span>. The weights of the submodels are given by the inverse distance to the original model <span><math><mi>M</mi></math></span>, based on a distance metric proposed by Eva et al. <span>[2]</span>. Apart from solving a major problem in the epistemology of counterfactuals, our paper shows how work in semantics, causal inference and formal epistemology can be fruitfully combined.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223000933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223000933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

因果建模语义学(CMS,例如 [6]、[22]、[12])是一个强大的框架,用于评估前因是原子公式组合的反事实。我们将 CMS 扩展到了对前件为非连接词的反事实的概率评估,更广泛地说,扩展到了前件为原子公式的任意布尔组合的反事实。我们的主要想法是在因果模型 M 中给反事实分配一个概率,作为 C 在真值为 A∨B 的子模型中的概率的加权平均值 [1], [3], [4]。子模型的权重由与原始模型 M 的反距离给出,该反距离基于 Eva 等人提出的距离度量[2]。除了解决了反事实认识论中的一个主要问题,我们的论文还展示了如何将语义学、因果推理和形式认识论的工作富有成效地结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Causal modeling semantics for counterfactuals with disjunctive antecedents

Causal Modeling Semantics (CMS, e.g., [6], [22], [12]) is a powerful framework for evaluating counterfactuals whose antecedent is a conjunction of atomic formulas. We extend CMS to an evaluation of the probability of counterfactuals with disjunctive antecedents, and more generally, to counterfactuals whose antecedent is an arbitrary Boolean combination of atomic formulas. Our main idea is to assign a probability to a counterfactual

at a causal model M as a weighted average of the probability of C in those submodels that truthmake AB [1], [3], [4]. The weights of the submodels are given by the inverse distance to the original model M, based on a distance metric proposed by Eva et al. [2]. Apart from solving a major problem in the epistemology of counterfactuals, our paper shows how work in semantics, causal inference and formal epistemology can be fruitfully combined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信