工业生产监控中基于蓝牙的机器学习技术的短程定位

IF 3.3 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Francesco Di Rienzo, Alessandro Madonna, Nicola Carbonaro, Alessandro Tognetti, Antonio Virdis, Carlo Vallati
{"title":"工业生产监控中基于蓝牙的机器学习技术的短程定位","authors":"Francesco Di Rienzo, Alessandro Madonna, Nicola Carbonaro, Alessandro Tognetti, Antonio Virdis, Carlo Vallati","doi":"10.3390/jsan12050075","DOIUrl":null,"url":null,"abstract":"Indoor short-range localization is crucial in many Industry 4.0 applications. Production monitoring for assembly lines, for instance, requires fine-grained positioning for parts or goods in order to keep track of the production process and the stations traversed by each product. Due to the unavailability of the Global Positioning System (GPS) for indoor positioning, a different approach is required. In this paper, we propose a specific design for short-range indoor positioning based on the analysis of the Received Signal Strength Indicator (RSSI) of Bluetooth beacons. To this aim, different machine learning techniques are considered and assessed: regressors, Convolution Neural Network (CNN) and Recurrent Neural Network (RNN). A realistic testbed is created to collect data for the training of the models and to assess the performance of each technique. Our analysis highlights the best models and the most convenient and suitable configuration for indoor localization. Finally, the localization accuracy is calculated in the considered use case, i.e., production monitoring. Our results show that the best performance is obtained using the K-Nearest Neighbors technique, which results in a good performance for general localization and in a high level of accuracy, 99%, for industrial production monitoring.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Range Localization via Bluetooth Using Machine Learning Techniques for Industrial Production Monitoring\",\"authors\":\"Francesco Di Rienzo, Alessandro Madonna, Nicola Carbonaro, Alessandro Tognetti, Antonio Virdis, Carlo Vallati\",\"doi\":\"10.3390/jsan12050075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor short-range localization is crucial in many Industry 4.0 applications. Production monitoring for assembly lines, for instance, requires fine-grained positioning for parts or goods in order to keep track of the production process and the stations traversed by each product. Due to the unavailability of the Global Positioning System (GPS) for indoor positioning, a different approach is required. In this paper, we propose a specific design for short-range indoor positioning based on the analysis of the Received Signal Strength Indicator (RSSI) of Bluetooth beacons. To this aim, different machine learning techniques are considered and assessed: regressors, Convolution Neural Network (CNN) and Recurrent Neural Network (RNN). A realistic testbed is created to collect data for the training of the models and to assess the performance of each technique. Our analysis highlights the best models and the most convenient and suitable configuration for indoor localization. Finally, the localization accuracy is calculated in the considered use case, i.e., production monitoring. Our results show that the best performance is obtained using the K-Nearest Neighbors technique, which results in a good performance for general localization and in a high level of accuracy, 99%, for industrial production monitoring.\",\"PeriodicalId\":37584,\"journal\":{\"name\":\"Journal of Sensor and Actuator Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensor and Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan12050075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12050075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

室内短距离定位在许多工业4.0应用中至关重要。例如,装配线的生产监控需要对零件或货物进行精细定位,以便跟踪生产过程和每个产品经过的工位。由于全球定位系统(GPS)无法用于室内定位,因此需要采用不同的方法。本文在分析蓝牙信标接收信号强度指标(Received Signal Strength Indicator, RSSI)的基础上,提出了一种针对室内短距离定位的具体设计方案。为此,考虑和评估了不同的机器学习技术:回归量、卷积神经网络(CNN)和循环神经网络(RNN)。创建了一个真实的测试平台来收集模型训练的数据,并评估每种技术的性能。我们的分析强调了室内定位的最佳模型和最方便、最合适的配置。最后,在考虑的用例(即生产监控)中计算定位精度。我们的研究结果表明,使用k近邻技术获得了最佳性能,这使得一般定位具有良好的性能,并且在工业生产监控中具有高达99%的高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Range Localization via Bluetooth Using Machine Learning Techniques for Industrial Production Monitoring
Indoor short-range localization is crucial in many Industry 4.0 applications. Production monitoring for assembly lines, for instance, requires fine-grained positioning for parts or goods in order to keep track of the production process and the stations traversed by each product. Due to the unavailability of the Global Positioning System (GPS) for indoor positioning, a different approach is required. In this paper, we propose a specific design for short-range indoor positioning based on the analysis of the Received Signal Strength Indicator (RSSI) of Bluetooth beacons. To this aim, different machine learning techniques are considered and assessed: regressors, Convolution Neural Network (CNN) and Recurrent Neural Network (RNN). A realistic testbed is created to collect data for the training of the models and to assess the performance of each technique. Our analysis highlights the best models and the most convenient and suitable configuration for indoor localization. Finally, the localization accuracy is calculated in the considered use case, i.e., production monitoring. Our results show that the best performance is obtained using the K-Nearest Neighbors technique, which results in a good performance for general localization and in a high level of accuracy, 99%, for industrial production monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sensor and Actuator Networks
Journal of Sensor and Actuator Networks Physics and Astronomy-Instrumentation
CiteScore
7.90
自引率
2.90%
发文量
70
审稿时长
11 weeks
期刊介绍: Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信