{"title":"三角形Artin群体的分裂","authors":"Kasia Jankiewicz","doi":"10.4171/ggd/740","DOIUrl":null,"url":null,"abstract":"We show that a triangle Artin group $\\mathrm{Art}\\_{MNP}$, where $M\\leq N\\leq P$, splits as an amalgamated product or an HNN extension of finite rank free groups, provided that either $M>2$ or $N>3$. We also prove that all even 3-generator Artin groups are residually finite.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splittings of triangle Artin groups\",\"authors\":\"Kasia Jankiewicz\",\"doi\":\"10.4171/ggd/740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a triangle Artin group $\\\\mathrm{Art}\\\\_{MNP}$, where $M\\\\leq N\\\\leq P$, splits as an amalgamated product or an HNN extension of finite rank free groups, provided that either $M>2$ or $N>3$. We also prove that all even 3-generator Artin groups are residually finite.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/ggd/740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that a triangle Artin group $\mathrm{Art}\_{MNP}$, where $M\leq N\leq P$, splits as an amalgamated product or an HNN extension of finite rank free groups, provided that either $M>2$ or $N>3$. We also prove that all even 3-generator Artin groups are residually finite.