基于Nesterov-Kaczmarz方法的河外考古中恒星人口运动分布重建

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fabian Hinterer, Simon Hubmer, Prashin Jethwa, Kirk M. Soodhalter, Glenn van de Ven, Ronny Ramlau
{"title":"基于Nesterov-Kaczmarz方法的河外考古中恒星人口运动分布重建","authors":"Fabian Hinterer, Simon Hubmer, Prashin Jethwa, Kirk M. Soodhalter, Glenn van de Ven, Ronny Ramlau","doi":"10.1137/22m1503002","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of reconstructing a galaxy’s stellar population-kinematic distribution function from optical integral field unit measurements. These quantities are connected via a high-dimensional integral equation. To solve this problem, we propose a projected Nesterov–Kaczmarz reconstruction method, which efficiently leverages the problem structure and incorporates physical prior information such as smoothness and nonnegativity constraints. To test the performance of our reconstruction approach, we apply it to a dataset simulated from a known ground truth density, and validate it by comparing our recoveries to those obtained by the widely used pPXF software.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Projected Nesterov–Kaczmarz Approach to Stellar Population-Kinematic Distribution Reconstruction in Extragalactic Archaeology\",\"authors\":\"Fabian Hinterer, Simon Hubmer, Prashin Jethwa, Kirk M. Soodhalter, Glenn van de Ven, Ronny Ramlau\",\"doi\":\"10.1137/22m1503002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of reconstructing a galaxy’s stellar population-kinematic distribution function from optical integral field unit measurements. These quantities are connected via a high-dimensional integral equation. To solve this problem, we propose a projected Nesterov–Kaczmarz reconstruction method, which efficiently leverages the problem structure and incorporates physical prior information such as smoothness and nonnegativity constraints. To test the performance of our reconstruction approach, we apply it to a dataset simulated from a known ground truth density, and validate it by comparing our recoveries to those obtained by the widely used pPXF software.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1503002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1503002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑从光学积分场单位测量中重建星系恒星群-运动分布函数的问题。这些量通过一个高维积分方程联系起来。为了解决这一问题,我们提出了一种投影Nesterov-Kaczmarz重建方法,该方法有效地利用了问题的结构,并结合了平滑性和非负性约束等物理先验信息。为了测试我们的重建方法的性能,我们将其应用于已知地面真值密度模拟的数据集,并通过将我们的恢复与广泛使用的pPXF软件获得的恢复进行比较来验证它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Projected Nesterov–Kaczmarz Approach to Stellar Population-Kinematic Distribution Reconstruction in Extragalactic Archaeology
In this paper, we consider the problem of reconstructing a galaxy’s stellar population-kinematic distribution function from optical integral field unit measurements. These quantities are connected via a high-dimensional integral equation. To solve this problem, we propose a projected Nesterov–Kaczmarz reconstruction method, which efficiently leverages the problem structure and incorporates physical prior information such as smoothness and nonnegativity constraints. To test the performance of our reconstruction approach, we apply it to a dataset simulated from a known ground truth density, and validate it by comparing our recoveries to those obtained by the widely used pPXF software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信