自旋电子应用中大面积沉积Co2FeSi Ir50Mn50多层膜的表面形貌和交换偏置各向异性研究

Pub Date : 2023-03-09 DOI:10.14429/dsj.73.18717
Himalaya Basumatary, Payel Chatterjee, M. Manivel Raja
{"title":"自旋电子应用中大面积沉积Co2FeSi Ir50Mn50多层膜的表面形貌和交换偏置各向异性研究","authors":"Himalaya Basumatary, Payel Chatterjee, M. Manivel Raja","doi":"10.14429/dsj.73.18717","DOIUrl":null,"url":null,"abstract":"Surface morphology and magnetic properties of ferromagnetic Heusler alloy Co2FeSi thin films and their multi-layers with anti-ferromagnetic Ir50Mn50, which find applications in spintronic devices were investigated. The sputtering process flow for large area deposition of thin films on 3 inch size thermally oxidized single crystal Si(100)/SiO2 substrates have been developed by optimizing the sputtering geometry and other process parameters. A uniform film composition, thickness, smooth surface, good crystallinity and magnetic properties have been achieved in the films over 3-inch size wafers. The isotropic magnetic properties such as saturation/remanent magnetizations, coercivity were achieved in Co2FeSi films deposited on 3-inch size Si(100)/SiO2 wafers with 15 nm Cr buffer layer. An exchange bias anisotropy has been established in Co2FeSi/IrMn multilayer by magnetic annealing process using in-house made magnetic annealing set up. A maximum exchange bias anisotropy field, Hex of 178 Oe and low coercivity, Hc of 85 Oe has been achieved in the Co2FeSi/IrMn multilayer stacks suitable for magnetic tunnel junctions for spintronic applications.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Morphology and Exchange Bias Anisotropy Studies in Large Area Deposited Co2FeSi Ir50Mn50 Multi Layers For Spintronic Applications\",\"authors\":\"Himalaya Basumatary, Payel Chatterjee, M. Manivel Raja\",\"doi\":\"10.14429/dsj.73.18717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface morphology and magnetic properties of ferromagnetic Heusler alloy Co2FeSi thin films and their multi-layers with anti-ferromagnetic Ir50Mn50, which find applications in spintronic devices were investigated. The sputtering process flow for large area deposition of thin films on 3 inch size thermally oxidized single crystal Si(100)/SiO2 substrates have been developed by optimizing the sputtering geometry and other process parameters. A uniform film composition, thickness, smooth surface, good crystallinity and magnetic properties have been achieved in the films over 3-inch size wafers. The isotropic magnetic properties such as saturation/remanent magnetizations, coercivity were achieved in Co2FeSi films deposited on 3-inch size Si(100)/SiO2 wafers with 15 nm Cr buffer layer. An exchange bias anisotropy has been established in Co2FeSi/IrMn multilayer by magnetic annealing process using in-house made magnetic annealing set up. A maximum exchange bias anisotropy field, Hex of 178 Oe and low coercivity, Hc of 85 Oe has been achieved in the Co2FeSi/IrMn multilayer stacks suitable for magnetic tunnel junctions for spintronic applications.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14429/dsj.73.18717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.73.18717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有反铁磁Ir50Mn50的Heusler合金Co2FeSi薄膜及其多层膜在自旋电子器件中的应用。通过优化溅射几何参数和其他工艺参数,建立了在3英寸尺寸热氧化单晶Si(100)/SiO2衬底上大面积沉积薄膜的溅射工艺流程。在3英寸以上的晶圆中,薄膜具有均匀的成分、厚度、光滑的表面、良好的结晶度和磁性能。在3英寸尺寸的Si(100)/SiO2晶片上沉积15 nm Cr缓冲层的Co2FeSi薄膜获得了饱和/剩余磁化、矫顽力等各向同性磁性能。利用自制的磁退火装置,在Co2FeSi/IrMn多层材料中建立了交换偏置各向异性。在适合自旋电子应用的磁隧道结中,Co2FeSi/IrMn多层堆叠获得了最大交换偏置各向异性场,Hex为178 Oe, Hc为85 Oe的低矫顽力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Surface Morphology and Exchange Bias Anisotropy Studies in Large Area Deposited Co2FeSi Ir50Mn50 Multi Layers For Spintronic Applications
Surface morphology and magnetic properties of ferromagnetic Heusler alloy Co2FeSi thin films and their multi-layers with anti-ferromagnetic Ir50Mn50, which find applications in spintronic devices were investigated. The sputtering process flow for large area deposition of thin films on 3 inch size thermally oxidized single crystal Si(100)/SiO2 substrates have been developed by optimizing the sputtering geometry and other process parameters. A uniform film composition, thickness, smooth surface, good crystallinity and magnetic properties have been achieved in the films over 3-inch size wafers. The isotropic magnetic properties such as saturation/remanent magnetizations, coercivity were achieved in Co2FeSi films deposited on 3-inch size Si(100)/SiO2 wafers with 15 nm Cr buffer layer. An exchange bias anisotropy has been established in Co2FeSi/IrMn multilayer by magnetic annealing process using in-house made magnetic annealing set up. A maximum exchange bias anisotropy field, Hex of 178 Oe and low coercivity, Hc of 85 Oe has been achieved in the Co2FeSi/IrMn multilayer stacks suitable for magnetic tunnel junctions for spintronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信