关于数字域$\mathfrak{P}$进进连分数的有限性

IF 0.5 4区 数学 Q3 MATHEMATICS
Laura Capuano, Nadir Murru, Lea Terracini
{"title":"关于数字域$\\mathfrak{P}$进进连分数的有限性","authors":"Laura Capuano, Nadir Murru, Lea Terracini","doi":"10.24033/bsmf.2860","DOIUrl":null,"url":null,"abstract":"For a prime ideal $\\mathfrak{P}$ of the ring of integers of a number field $K$, we give a general definition of $\\mathfrak{P}$-adic continued fraction, which also includes classical definitions of continued fractions in the field of $p$--adic numbers. We give some necessary and sufficient conditions on $K$ ensuring that every $\\alpha\\in K$ admits a finite $\\mathfrak{P}$-adic continued fraction expansion for all but finitely many $\\mathfrak{P}$, addressing a similar problem posed by Rosen in the archimedean setting.","PeriodicalId":55332,"journal":{"name":"Bulletin De La Societe Mathematique De France","volume":"1 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the finiteness of $\\\\mathfrak{P}$-adic continued fractions for number fields\",\"authors\":\"Laura Capuano, Nadir Murru, Lea Terracini\",\"doi\":\"10.24033/bsmf.2860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a prime ideal $\\\\mathfrak{P}$ of the ring of integers of a number field $K$, we give a general definition of $\\\\mathfrak{P}$-adic continued fraction, which also includes classical definitions of continued fractions in the field of $p$--adic numbers. We give some necessary and sufficient conditions on $K$ ensuring that every $\\\\alpha\\\\in K$ admits a finite $\\\\mathfrak{P}$-adic continued fraction expansion for all but finitely many $\\\\mathfrak{P}$, addressing a similar problem posed by Rosen in the archimedean setting.\",\"PeriodicalId\":55332,\"journal\":{\"name\":\"Bulletin De La Societe Mathematique De France\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin De La Societe Mathematique De France\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24033/bsmf.2860\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin De La Societe Mathematique De France","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24033/bsmf.2860","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于数域$K$的整数环的素数理想$\mathfrak{P}$,给出$\mathfrak{P}$-进连续分数的一般定义,其中还包括$ P $-进数域内连分数的经典定义。我们给出了K$的一些充要条件,以保证K$中的每个$\alpha\对于除有限个$\mathfrak{P}$以外的所有$\mathfrak{P}$有一个有限的$\mathfrak{P}$进进的连分式展开,解决了Rosen在阿基米德环境中提出的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the finiteness of $\mathfrak{P}$-adic continued fractions for number fields
For a prime ideal $\mathfrak{P}$ of the ring of integers of a number field $K$, we give a general definition of $\mathfrak{P}$-adic continued fraction, which also includes classical definitions of continued fractions in the field of $p$--adic numbers. We give some necessary and sufficient conditions on $K$ ensuring that every $\alpha\in K$ admits a finite $\mathfrak{P}$-adic continued fraction expansion for all but finitely many $\mathfrak{P}$, addressing a similar problem posed by Rosen in the archimedean setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Bulletin de la Société Mathématique de France was founded in 1873, and it has published works by some of the most prestigious mathematicians, including for example H. Poincaré, E. Borel, E. Cartan, A. Grothendieck and J. Leray. It continues to be a journal of the highest mathematical quality, using a rigorous refereeing process, as well as a discerning selection procedure. Its editorial board members have diverse specializations in mathematics, ensuring that articles in all areas of mathematics are considered. Promising work by young authors is encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信