多元因果-非因果混合模型中常见气泡的检测

IF 1.1 Q3 ECONOMICS
Gianluca Cubadda, Alain Hecq, Elisa Voisin
{"title":"多元因果-非因果混合模型中常见气泡的检测","authors":"Gianluca Cubadda, Alain Hecq, Elisa Voisin","doi":"10.3390/econometrics11010009","DOIUrl":null,"url":null,"abstract":"This paper proposes concepts and methods to investigate whether the bubble patterns observed in individual time series are common among them. Having established the conditions under which common bubbles are present within the class of mixed causal–noncausal vector autoregressive models, we suggest statistical tools to detect the common locally explosive dynamics in a Student t-distribution maximum likelihood framework. The performances of both likelihood ratio tests and information criteria were investigated in a Monte Carlo study. Finally, we evaluated the practical value of our approach via an empirical application on three commodity prices.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"64 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Common Bubbles in Multivariate Mixed Causal–Noncausal Models\",\"authors\":\"Gianluca Cubadda, Alain Hecq, Elisa Voisin\",\"doi\":\"10.3390/econometrics11010009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes concepts and methods to investigate whether the bubble patterns observed in individual time series are common among them. Having established the conditions under which common bubbles are present within the class of mixed causal–noncausal vector autoregressive models, we suggest statistical tools to detect the common locally explosive dynamics in a Student t-distribution maximum likelihood framework. The performances of both likelihood ratio tests and information criteria were investigated in a Monte Carlo study. Finally, we evaluated the practical value of our approach via an empirical application on three commodity prices.\",\"PeriodicalId\":11499,\"journal\":{\"name\":\"Econometrics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/econometrics11010009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一些概念和方法来研究在单个时间序列中观测到的气泡模式是否具有共性。在建立了在混合因果-非因果向量自回归模型类别中存在共同气泡的条件之后,我们建议使用统计工具来检测学生t分布最大似然框架中常见的局部爆炸动态。在蒙特卡洛研究中,研究了似然比检验和信息准则的性能。最后,我们通过对三种商品价格的实证应用来评估我们方法的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Common Bubbles in Multivariate Mixed Causal–Noncausal Models
This paper proposes concepts and methods to investigate whether the bubble patterns observed in individual time series are common among them. Having established the conditions under which common bubbles are present within the class of mixed causal–noncausal vector autoregressive models, we suggest statistical tools to detect the common locally explosive dynamics in a Student t-distribution maximum likelihood framework. The performances of both likelihood ratio tests and information criteria were investigated in a Monte Carlo study. Finally, we evaluated the practical value of our approach via an empirical application on three commodity prices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信