Carlos Terencio Pires Bomfimsilva, Theodoro Antoun Netto
{"title":"用于深水开发的新型独立式立管概念","authors":"Carlos Terencio Pires Bomfimsilva, Theodoro Antoun Netto","doi":"10.1115/1.4062688","DOIUrl":null,"url":null,"abstract":"Abstract Free-standing hybrid risers (FSHR) are well established in deepwater field developments in the oil and gas industry. The major advantages foreseen for the FSHR are the possibility of safely anticipating production and requiring significantly reduced payloads at the floating production unit. This work addresses the feasibility of a novel proposed optimized concept, the free-standing integrated riser (FSIR), where the pipeline is integrated into the riser by means of a transition section, which is kept in place by a multiple line mooring system, developed to keep the functionality and integrity of the entire riser along its lifetime. The work provides the findings from numerical analysis simulated in orcaflex, a finite element simulation software dedicated to global analysis of risers, considering the design criteria provided in API 2RD Standard. As part of the FSIR evaluation, screening static analysis was performed to identify the most promising configurations for the multiple line mooring system, followed by a series of dynamic analyses to evaluate the behavior of the riser in extreme conditions. In addition, several investigations were performed to assess the functionality and the robustness of the system, including parametric studies to check for installation and dimensional tolerances, assessment of fatigue damage, and checking the impact of pipe size on the design. The results show that the proposed novel FSIR concept can provide a practical and economical solution for deepwater projects.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"103 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Free-Standing Riser Concept for Deepwater Developments\",\"authors\":\"Carlos Terencio Pires Bomfimsilva, Theodoro Antoun Netto\",\"doi\":\"10.1115/1.4062688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Free-standing hybrid risers (FSHR) are well established in deepwater field developments in the oil and gas industry. The major advantages foreseen for the FSHR are the possibility of safely anticipating production and requiring significantly reduced payloads at the floating production unit. This work addresses the feasibility of a novel proposed optimized concept, the free-standing integrated riser (FSIR), where the pipeline is integrated into the riser by means of a transition section, which is kept in place by a multiple line mooring system, developed to keep the functionality and integrity of the entire riser along its lifetime. The work provides the findings from numerical analysis simulated in orcaflex, a finite element simulation software dedicated to global analysis of risers, considering the design criteria provided in API 2RD Standard. As part of the FSIR evaluation, screening static analysis was performed to identify the most promising configurations for the multiple line mooring system, followed by a series of dynamic analyses to evaluate the behavior of the riser in extreme conditions. In addition, several investigations were performed to assess the functionality and the robustness of the system, including parametric studies to check for installation and dimensional tolerances, assessment of fatigue damage, and checking the impact of pipe size on the design. The results show that the proposed novel FSIR concept can provide a practical and economical solution for deepwater projects.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062688\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062688","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A Novel Free-Standing Riser Concept for Deepwater Developments
Abstract Free-standing hybrid risers (FSHR) are well established in deepwater field developments in the oil and gas industry. The major advantages foreseen for the FSHR are the possibility of safely anticipating production and requiring significantly reduced payloads at the floating production unit. This work addresses the feasibility of a novel proposed optimized concept, the free-standing integrated riser (FSIR), where the pipeline is integrated into the riser by means of a transition section, which is kept in place by a multiple line mooring system, developed to keep the functionality and integrity of the entire riser along its lifetime. The work provides the findings from numerical analysis simulated in orcaflex, a finite element simulation software dedicated to global analysis of risers, considering the design criteria provided in API 2RD Standard. As part of the FSIR evaluation, screening static analysis was performed to identify the most promising configurations for the multiple line mooring system, followed by a series of dynamic analyses to evaluate the behavior of the riser in extreme conditions. In addition, several investigations were performed to assess the functionality and the robustness of the system, including parametric studies to check for installation and dimensional tolerances, assessment of fatigue damage, and checking the impact of pipe size on the design. The results show that the proposed novel FSIR concept can provide a practical and economical solution for deepwater projects.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.