非厄米随机矩阵的部分线性特征值统计

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
S. O'Rourke, N. Williams
{"title":"非厄米随机矩阵的部分线性特征值统计","authors":"S. O'Rourke, N. Williams","doi":"10.1137/s0040585x97t991179","DOIUrl":null,"url":null,"abstract":"For an $n \\times n$ independent-entry random matrix $X_n$ with eigenvalues $\\lambda_1, \\dots, \\lambda_n$, the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118--2143] asserts that the fluctuations of the linear eigenvalue statistics $\\sum_{i=1}^n f(\\lambda_i)$ converge to a Gaussian distribution for sufficiently nice test functions $f$. We study the fluctuations of $\\sum_{i=1}^{n-K} f(\\lambda_i)$, where $K$ randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when $K$ is fixed as well as for the case when $K$ tends to infinity with $n$. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93--117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of $X_n$ to the circular law in Wasserstein distance, which may be of independent interest.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Linear Eigenvalue Statistics for Non-Hermitian Random Matrices\",\"authors\":\"S. O'Rourke, N. Williams\",\"doi\":\"10.1137/s0040585x97t991179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an $n \\\\times n$ independent-entry random matrix $X_n$ with eigenvalues $\\\\lambda_1, \\\\dots, \\\\lambda_n$, the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118--2143] asserts that the fluctuations of the linear eigenvalue statistics $\\\\sum_{i=1}^n f(\\\\lambda_i)$ converge to a Gaussian distribution for sufficiently nice test functions $f$. We study the fluctuations of $\\\\sum_{i=1}^{n-K} f(\\\\lambda_i)$, where $K$ randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when $K$ is fixed as well as for the case when $K$ tends to infinity with $n$. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93--117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of $X_n$ to the circular law in Wasserstein distance, which may be of independent interest.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991179\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991179","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对于具有特征值的$n \times n$独立入口随机矩阵$X_n$$\lambda_1, \dots, \lambda_n$, Rider和Silverstein的开创性工作[Ann。可能吧。[j], 34 (2006), pp. 2118—2143]断言,对于足够好的测试函数$f$,线性特征值统计量的波动收敛于高斯分布$\sum_{i=1}^n f(\lambda_i)$。我们研究了$\sum_{i=1}^{n-K} f(\lambda_i)$的波动,其中$K$随机选择的特征值已经从和中去除。在这种情况下,我们确定了极限分布,并证明它不一定是高斯分布。我们的结果既适用于$K$固定的情况,也适用于$K$随$n$趋于无穷大的情况。该证明利用了E. Meckes和M. Meckes, [Ann。]脸。科学。图卢兹数学。(6), 24 (2015), pp. 93—117]。由于我们的方法,我们得到了在Wasserstein距离上循环定律的经验谱分布$X_n$的收敛速率,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial Linear Eigenvalue Statistics for Non-Hermitian Random Matrices
For an $n \times n$ independent-entry random matrix $X_n$ with eigenvalues $\lambda_1, \dots, \lambda_n$, the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118--2143] asserts that the fluctuations of the linear eigenvalue statistics $\sum_{i=1}^n f(\lambda_i)$ converge to a Gaussian distribution for sufficiently nice test functions $f$. We study the fluctuations of $\sum_{i=1}^{n-K} f(\lambda_i)$, where $K$ randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when $K$ is fixed as well as for the case when $K$ tends to infinity with $n$. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93--117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of $X_n$ to the circular law in Wasserstein distance, which may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信