{"title":"非厄米随机矩阵的部分线性特征值统计","authors":"S. O'Rourke, N. Williams","doi":"10.1137/s0040585x97t991179","DOIUrl":null,"url":null,"abstract":"For an $n \\times n$ independent-entry random matrix $X_n$ with eigenvalues $\\lambda_1, \\dots, \\lambda_n$, the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118--2143] asserts that the fluctuations of the linear eigenvalue statistics $\\sum_{i=1}^n f(\\lambda_i)$ converge to a Gaussian distribution for sufficiently nice test functions $f$. We study the fluctuations of $\\sum_{i=1}^{n-K} f(\\lambda_i)$, where $K$ randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when $K$ is fixed as well as for the case when $K$ tends to infinity with $n$. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93--117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of $X_n$ to the circular law in Wasserstein distance, which may be of independent interest.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Linear Eigenvalue Statistics for Non-Hermitian Random Matrices\",\"authors\":\"S. O'Rourke, N. Williams\",\"doi\":\"10.1137/s0040585x97t991179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an $n \\\\times n$ independent-entry random matrix $X_n$ with eigenvalues $\\\\lambda_1, \\\\dots, \\\\lambda_n$, the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118--2143] asserts that the fluctuations of the linear eigenvalue statistics $\\\\sum_{i=1}^n f(\\\\lambda_i)$ converge to a Gaussian distribution for sufficiently nice test functions $f$. We study the fluctuations of $\\\\sum_{i=1}^{n-K} f(\\\\lambda_i)$, where $K$ randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when $K$ is fixed as well as for the case when $K$ tends to infinity with $n$. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93--117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of $X_n$ to the circular law in Wasserstein distance, which may be of independent interest.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991179\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991179","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
对于具有特征值的$n \times n$独立入口随机矩阵$X_n$$\lambda_1, \dots, \lambda_n$, Rider和Silverstein的开创性工作[Ann。可能吧。[j], 34 (2006), pp. 2118—2143]断言,对于足够好的测试函数$f$,线性特征值统计量的波动收敛于高斯分布$\sum_{i=1}^n f(\lambda_i)$。我们研究了$\sum_{i=1}^{n-K} f(\lambda_i)$的波动,其中$K$随机选择的特征值已经从和中去除。在这种情况下,我们确定了极限分布,并证明它不一定是高斯分布。我们的结果既适用于$K$固定的情况,也适用于$K$随$n$趋于无穷大的情况。该证明利用了E. Meckes和M. Meckes, [Ann。]脸。科学。图卢兹数学。(6), 24 (2015), pp. 93—117]。由于我们的方法,我们得到了在Wasserstein距离上循环定律的经验谱分布$X_n$的收敛速率,这可能是独立的兴趣。
Partial Linear Eigenvalue Statistics for Non-Hermitian Random Matrices
For an $n \times n$ independent-entry random matrix $X_n$ with eigenvalues $\lambda_1, \dots, \lambda_n$, the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118--2143] asserts that the fluctuations of the linear eigenvalue statistics $\sum_{i=1}^n f(\lambda_i)$ converge to a Gaussian distribution for sufficiently nice test functions $f$. We study the fluctuations of $\sum_{i=1}^{n-K} f(\lambda_i)$, where $K$ randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when $K$ is fixed as well as for the case when $K$ tends to infinity with $n$. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93--117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of $X_n$ to the circular law in Wasserstein distance, which may be of independent interest.
期刊介绍:
Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.