{"title":"具有非高斯先验的无限维Metropolis-Hastings的谱隙和误差估计","authors":"Bamdad Hosseini, James E Johndrow","doi":"10.1214/22-aap1854","DOIUrl":null,"url":null,"abstract":"We study a class of Metropolis–Hastings algorithms for target measures that are absolutely continuous with respect to a large class of non-Gaussian prior measures on Banach spaces. The algorithm is shown to have a spectral gap in a Wasserstein-like semimetric weighted by a Lyapunov function. A number of error bounds are given for computationally tractable approximations of the algorithm including bounds on the closeness of Cesáro averages and other pathwise quantities via perturbation theory. Several applications illustrate the breadth of problems to which the results apply such as various likelihood approximations and perturbations of prior measures.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"47 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spectral gaps and error estimates for infinite-dimensional Metropolis–Hastings with non-Gaussian priors\",\"authors\":\"Bamdad Hosseini, James E Johndrow\",\"doi\":\"10.1214/22-aap1854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a class of Metropolis–Hastings algorithms for target measures that are absolutely continuous with respect to a large class of non-Gaussian prior measures on Banach spaces. The algorithm is shown to have a spectral gap in a Wasserstein-like semimetric weighted by a Lyapunov function. A number of error bounds are given for computationally tractable approximations of the algorithm including bounds on the closeness of Cesáro averages and other pathwise quantities via perturbation theory. Several applications illustrate the breadth of problems to which the results apply such as various likelihood approximations and perturbations of prior measures.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1854\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1854","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Spectral gaps and error estimates for infinite-dimensional Metropolis–Hastings with non-Gaussian priors
We study a class of Metropolis–Hastings algorithms for target measures that are absolutely continuous with respect to a large class of non-Gaussian prior measures on Banach spaces. The algorithm is shown to have a spectral gap in a Wasserstein-like semimetric weighted by a Lyapunov function. A number of error bounds are given for computationally tractable approximations of the algorithm including bounds on the closeness of Cesáro averages and other pathwise quantities via perturbation theory. Several applications illustrate the breadth of problems to which the results apply such as various likelihood approximations and perturbations of prior measures.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.