{"title":"凸极小化问题的显式有效误差估计","authors":"Sören Bartels, Alex Kaltenbach","doi":"10.1090/mcom/3821","DOIUrl":null,"url":null,"abstract":"We combine a systematic approach for deriving general a posteriori error estimates for convex minimization problems based on convex duality relations with a recently derived generalized Marini formula. The a posteriori error estimates are quasi constant-free and apply to a large class of variational problems including the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dirichlet problem, as well as degenerate minimization, obstacle and image de-noising problems. In addition, these a posteriori error estimates are based on a comparison to a given non-conforming finite element solution. For the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dirichlet problem, these a posteriori error bounds are equivalent to residual type a posteriori error bounds and, hence, reliable and efficient.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"204 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explicit and efficient error estimation for convex minimization problems\",\"authors\":\"Sören Bartels, Alex Kaltenbach\",\"doi\":\"10.1090/mcom/3821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine a systematic approach for deriving general a posteriori error estimates for convex minimization problems based on convex duality relations with a recently derived generalized Marini formula. The a posteriori error estimates are quasi constant-free and apply to a large class of variational problems including the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dirichlet problem, as well as degenerate minimization, obstacle and image de-noising problems. In addition, these a posteriori error estimates are based on a comparison to a given non-conforming finite element solution. For the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dirichlet problem, these a posteriori error bounds are equivalent to residual type a posteriori error bounds and, hence, reliable and efficient.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3821\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3821","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
摘要
我们将基于凸对偶关系的凸最小化问题的一般后验误差估计的系统方法与最近导出的广义Marini公式相结合。后验误差估计是准常数自由的,并适用于一大类变分问题,包括p -Dirichlet问题,以及退化最小化,障碍和图像去噪问题。此外,这些后验误差估计是基于与给定非一致性有限元解的比较。对于p p -Dirichlet问题,这些后验误差界等价于残差型后验误差界,因此是可靠和有效的。
Explicit and efficient error estimation for convex minimization problems
We combine a systematic approach for deriving general a posteriori error estimates for convex minimization problems based on convex duality relations with a recently derived generalized Marini formula. The a posteriori error estimates are quasi constant-free and apply to a large class of variational problems including the pp-Dirichlet problem, as well as degenerate minimization, obstacle and image de-noising problems. In addition, these a posteriori error estimates are based on a comparison to a given non-conforming finite element solution. For the pp-Dirichlet problem, these a posteriori error bounds are equivalent to residual type a posteriori error bounds and, hence, reliable and efficient.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.