基于反向传播算法的人工神经网络在tokopedia黑摩尔销售评级分类中的实现

Dalfa Habibah Nurul Aini, Dian Kurniasari, Aang Nuryaman, Mustofa Usman
{"title":"基于反向传播算法的人工神经网络在tokopedia黑摩尔销售评级分类中的实现","authors":"Dalfa Habibah Nurul Aini, Dian Kurniasari, Aang Nuryaman, Mustofa Usman","doi":"10.52436/1.jutif.2023.4.2.539","DOIUrl":null,"url":null,"abstract":"The rating assessment classification contains feedback from consumers, which is given in the form of stars which aims to assess a product. However, the amount of data in the classification process often have differences in each class or is called an imbalanced dataset. These problems can affect the classification results. An imbalanced dataset can be overcome by applying random oversampling. To classify the rating assessment, this study proposes the Neural network method, which has a good accuracy level with the backpropagation algorithm and applies random oversampling to overcome the unbalanced amount of data. The results indicate that the neural network method with the backpropagation algorithm can classify the available data with an accuracy level of 85%. The application of resampling data using random oversampling and determining the amount of distribution of training data, testing data, number of epochs and the correct number of batch sizes affect the results obtained.","PeriodicalId":52586,"journal":{"name":"Jurnal Sarjana Teknik Informatika","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK WITH BACKPROPAGATION ALGORITHM FOR RATING CLASSIFICATION ON SALES OF BLACKMORES IN TOKOPEDIA\",\"authors\":\"Dalfa Habibah Nurul Aini, Dian Kurniasari, Aang Nuryaman, Mustofa Usman\",\"doi\":\"10.52436/1.jutif.2023.4.2.539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rating assessment classification contains feedback from consumers, which is given in the form of stars which aims to assess a product. However, the amount of data in the classification process often have differences in each class or is called an imbalanced dataset. These problems can affect the classification results. An imbalanced dataset can be overcome by applying random oversampling. To classify the rating assessment, this study proposes the Neural network method, which has a good accuracy level with the backpropagation algorithm and applies random oversampling to overcome the unbalanced amount of data. The results indicate that the neural network method with the backpropagation algorithm can classify the available data with an accuracy level of 85%. The application of resampling data using random oversampling and determining the amount of distribution of training data, testing data, number of epochs and the correct number of batch sizes affect the results obtained.\",\"PeriodicalId\":52586,\"journal\":{\"name\":\"Jurnal Sarjana Teknik Informatika\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sarjana Teknik Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52436/1.jutif.2023.4.2.539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sarjana Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52436/1.jutif.2023.4.2.539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评级评估分类包含了消费者的反馈,这些反馈以星级的形式给出,目的是对产品进行评估。然而,在分类过程中的数据量往往在每个类别中都有差异,或者被称为不平衡数据集。这些问题都会影响分类结果。不平衡的数据集可以通过随机过采样来克服。为了对评级评估进行分类,本研究提出了神经网络方法,该方法与反向传播算法具有良好的准确率水平,并采用随机过采样来克服数据量的不平衡。结果表明,采用反向传播算法的神经网络方法对可用数据进行分类,准确率达到85%。使用随机过采样对数据进行重采样,并确定训练数据、测试数据的分布数量、epoch的个数和正确的批大小数量会影响得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK WITH BACKPROPAGATION ALGORITHM FOR RATING CLASSIFICATION ON SALES OF BLACKMORES IN TOKOPEDIA
The rating assessment classification contains feedback from consumers, which is given in the form of stars which aims to assess a product. However, the amount of data in the classification process often have differences in each class or is called an imbalanced dataset. These problems can affect the classification results. An imbalanced dataset can be overcome by applying random oversampling. To classify the rating assessment, this study proposes the Neural network method, which has a good accuracy level with the backpropagation algorithm and applies random oversampling to overcome the unbalanced amount of data. The results indicate that the neural network method with the backpropagation algorithm can classify the available data with an accuracy level of 85%. The application of resampling data using random oversampling and determining the amount of distribution of training data, testing data, number of epochs and the correct number of batch sizes affect the results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信