J.Q. Fan, T.H. Hou, Q. Zhao, F. Zhang, K. Li, J. Fang, J.H. Hao, Z.W. Dong
{"title":"辐射对15nm块体FinFET总电离剂量效应的模拟研究","authors":"J.Q. Fan, T.H. Hou, Q. Zhao, F. Zhang, K. Li, J. Fang, J.H. Hao, Z.W. Dong","doi":"10.1088/1748-0221/18/10/p10027","DOIUrl":null,"url":null,"abstract":"Abstract FinFET is a new mainstream semiconductor device that is widely used in space applications. This paper studies the effects of radiation damage typically encountered in space applications by simulating the effects of total ionizing dose (TID) from 0 to 1 Mrad on a 15 nm n-type bulk FinFET. In particular we have simulated the effects of radiation damage on the transfer characteristic curve, threshold voltage and subthreshold swing of the FinFET. We have also varied some device process parameters such as gate length, fin width and fin height in order to assess their impact on the device susceptibility to radiation damage and our results show that the device structure with longer gate length, wider fin width and taller fin height have better performance. In addition, the higher channel doping concentration, the use of SiO 2 in the gate, and the low device operating temperature can also effectively reduce the TID effects.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"14 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation study of total ionizing dose effect of gamma radiation on 15 nm bulk FinFET\",\"authors\":\"J.Q. Fan, T.H. Hou, Q. Zhao, F. Zhang, K. Li, J. Fang, J.H. Hao, Z.W. Dong\",\"doi\":\"10.1088/1748-0221/18/10/p10027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract FinFET is a new mainstream semiconductor device that is widely used in space applications. This paper studies the effects of radiation damage typically encountered in space applications by simulating the effects of total ionizing dose (TID) from 0 to 1 Mrad on a 15 nm n-type bulk FinFET. In particular we have simulated the effects of radiation damage on the transfer characteristic curve, threshold voltage and subthreshold swing of the FinFET. We have also varied some device process parameters such as gate length, fin width and fin height in order to assess their impact on the device susceptibility to radiation damage and our results show that the device structure with longer gate length, wider fin width and taller fin height have better performance. In addition, the higher channel doping concentration, the use of SiO 2 in the gate, and the low device operating temperature can also effectively reduce the TID effects.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/18/10/p10027\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/10/p10027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Simulation study of total ionizing dose effect of gamma radiation on 15 nm bulk FinFET
Abstract FinFET is a new mainstream semiconductor device that is widely used in space applications. This paper studies the effects of radiation damage typically encountered in space applications by simulating the effects of total ionizing dose (TID) from 0 to 1 Mrad on a 15 nm n-type bulk FinFET. In particular we have simulated the effects of radiation damage on the transfer characteristic curve, threshold voltage and subthreshold swing of the FinFET. We have also varied some device process parameters such as gate length, fin width and fin height in order to assess their impact on the device susceptibility to radiation damage and our results show that the device structure with longer gate length, wider fin width and taller fin height have better performance. In addition, the higher channel doping concentration, the use of SiO 2 in the gate, and the low device operating temperature can also effectively reduce the TID effects.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.