Shih-sen Chang, Liangcai Zhao, Min Liu, Jinfang Tang
{"title":"$\\operatorname{CAT} (\\kappa)$空间中全渐近非扩张映射的收敛定理","authors":"Shih-sen Chang, Liangcai Zhao, Min Liu, Jinfang Tang","doi":"10.1186/s13663-022-00739-2","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this paper is to study the convergence theorems in $\\operatorname{CAT} (\\kappa )$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>CAT</mml:mo> <mml:mo>(</mml:mo> <mml:mi>κ</mml:mi> <mml:mo>)</mml:mo> </mml:math> spaces with $k > 0$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>k</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> for total asymptotically nonexpansive mappings which are essentially wider than nonexpansive mappings, asymptotically nonexpansive mapping, and asymptotically nonexpansive mappings in the intermediate sense. Our results generalize, unify, and improve several comparable results in the existing literature.","PeriodicalId":87256,"journal":{"name":"Fixed point theory and algorithms for sciences and engineering","volume":"57 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence theorems for total asymptotically nonexpansive mappings in $\\\\operatorname{CAT} (\\\\kappa )$ spaces\",\"authors\":\"Shih-sen Chang, Liangcai Zhao, Min Liu, Jinfang Tang\",\"doi\":\"10.1186/s13663-022-00739-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this paper is to study the convergence theorems in $\\\\operatorname{CAT} (\\\\kappa )$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>CAT</mml:mo> <mml:mo>(</mml:mo> <mml:mi>κ</mml:mi> <mml:mo>)</mml:mo> </mml:math> spaces with $k > 0$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>k</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> for total asymptotically nonexpansive mappings which are essentially wider than nonexpansive mappings, asymptotically nonexpansive mapping, and asymptotically nonexpansive mappings in the intermediate sense. Our results generalize, unify, and improve several comparable results in the existing literature.\",\"PeriodicalId\":87256,\"journal\":{\"name\":\"Fixed point theory and algorithms for sciences and engineering\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed point theory and algorithms for sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13663-022-00739-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed point theory and algorithms for sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13663-022-00739-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文研究$\operatorname{CAT} (\kappa)$ CAT (κ)空间中$k >0$ k >对于总的渐近非扩张映射,它本质上比非扩张映射,渐近非扩张映射,以及中间意义上的渐近非扩张映射更宽。我们的结果概括、统一并改进了现有文献中几个可比较的结果。
Convergence theorems for total asymptotically nonexpansive mappings in $\operatorname{CAT} (\kappa )$ spaces
Abstract The purpose of this paper is to study the convergence theorems in $\operatorname{CAT} (\kappa )$ CAT(κ) spaces with $k > 0$ k>0 for total asymptotically nonexpansive mappings which are essentially wider than nonexpansive mappings, asymptotically nonexpansive mapping, and asymptotically nonexpansive mappings in the intermediate sense. Our results generalize, unify, and improve several comparable results in the existing literature.