二项过程的向量值统计:凸距上的Berry-Esseen界

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Mikołaj J. Kasprzak, Giovanni Peccati
{"title":"二项过程的向量值统计:凸距上的Berry-Esseen界","authors":"Mikołaj J. Kasprzak, Giovanni Peccati","doi":"10.1214/22-aap1897","DOIUrl":null,"url":null,"abstract":"We study the discrepancy between the distribution of a vector-valued functional of i.i.d. random elements and that of a Gaussian vector. Our main contribution is an explicit bound on the convex distance between the two distributions, holding in every dimension. Such a finding constitutes a substantial extension of the one-dimensional bounds deduced in Chatterjee (Ann. Probab. 36 (2008) 1584–1610) and Lachièze-Rey and Peccati (Ann. Appl. Probab. 27 (2017) 1992–2031), as well as of the multidimensional bounds for smooth test functions and indicators of rectangles derived, respectively, in Dung (Acta Math. Hungar. 158 (2019) 173–201), and Fang and Koike (Ann. Appl. Probab. 31 (2021) 1660–1686). Our techniques involve the use of Stein’s method, combined with a suitable adaptation of the recursive approach inaugurated by Schulte and Yukich (Electron. J. Probab. 24 (2019) 1–42): this yields rates of converge that have a presumably optimal dependence on the sample size. We develop several applications of a geometric nature, among which is a new collection of multidimensional quantitative limit theorems for the intrinsic volumes associated with coverage processes in Euclidean spaces.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"2 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vector-valued statistics of binomial processes: Berry–Esseen bounds in the convex distance\",\"authors\":\"Mikołaj J. Kasprzak, Giovanni Peccati\",\"doi\":\"10.1214/22-aap1897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the discrepancy between the distribution of a vector-valued functional of i.i.d. random elements and that of a Gaussian vector. Our main contribution is an explicit bound on the convex distance between the two distributions, holding in every dimension. Such a finding constitutes a substantial extension of the one-dimensional bounds deduced in Chatterjee (Ann. Probab. 36 (2008) 1584–1610) and Lachièze-Rey and Peccati (Ann. Appl. Probab. 27 (2017) 1992–2031), as well as of the multidimensional bounds for smooth test functions and indicators of rectangles derived, respectively, in Dung (Acta Math. Hungar. 158 (2019) 173–201), and Fang and Koike (Ann. Appl. Probab. 31 (2021) 1660–1686). Our techniques involve the use of Stein’s method, combined with a suitable adaptation of the recursive approach inaugurated by Schulte and Yukich (Electron. J. Probab. 24 (2019) 1–42): this yields rates of converge that have a presumably optimal dependence on the sample size. We develop several applications of a geometric nature, among which is a new collection of multidimensional quantitative limit theorems for the intrinsic volumes associated with coverage processes in Euclidean spaces.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1897\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1897","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

研究了随机元素的向量值泛函的分布与高斯向量分布的差异。我们的主要贡献是两个分布之间凸距离的显式边界,在每个维度上都成立。这样的发现构成了在查特吉(安。Probab. 36(2008) 1584-1610)和lachi - rey和Peccati (Ann。达成。Probab. 27(2017) 1992-2031),以及分别推导出的光滑测试函数和矩形指标的多维界限(数学学报)。匈牙利,158(2019)173-201),方和小池(安。达成。约31(2021)1660-1686)。我们的技术包括使用Stein的方法,结合舒尔特和尤基奇(Electron)开创的递归方法的适当适应。J. Probab. 24(2019) 1-42):这产生的收敛率可能对样本量具有最佳依赖性。我们开发了几个几何性质的应用,其中包括欧几里得空间中与覆盖过程相关的内在体积的多维定量极限定理的新集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector-valued statistics of binomial processes: Berry–Esseen bounds in the convex distance
We study the discrepancy between the distribution of a vector-valued functional of i.i.d. random elements and that of a Gaussian vector. Our main contribution is an explicit bound on the convex distance between the two distributions, holding in every dimension. Such a finding constitutes a substantial extension of the one-dimensional bounds deduced in Chatterjee (Ann. Probab. 36 (2008) 1584–1610) and Lachièze-Rey and Peccati (Ann. Appl. Probab. 27 (2017) 1992–2031), as well as of the multidimensional bounds for smooth test functions and indicators of rectangles derived, respectively, in Dung (Acta Math. Hungar. 158 (2019) 173–201), and Fang and Koike (Ann. Appl. Probab. 31 (2021) 1660–1686). Our techniques involve the use of Stein’s method, combined with a suitable adaptation of the recursive approach inaugurated by Schulte and Yukich (Electron. J. Probab. 24 (2019) 1–42): this yields rates of converge that have a presumably optimal dependence on the sample size. We develop several applications of a geometric nature, among which is a new collection of multidimensional quantitative limit theorems for the intrinsic volumes associated with coverage processes in Euclidean spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信