{"title":"石墨平均场系统","authors":"Erhan Bayraktar, Suman Chakraborty, Ruoyu Wu","doi":"10.1214/22-aap1901","DOIUrl":null,"url":null,"abstract":"We consider heterogeneously interacting diffusive particle systems and their large population limit. The interaction is of mean field type with weights characterized by an underlying graphon. A law of large numbers result is established as the system size increases and the underlying graphons converge. The limit is given by a graphon mean field system consisting of independent but heterogeneous nonlinear diffusions whose probability distributions are fully coupled. Well-posedness, continuity and stability of such systems are provided. We also consider a not-so-dense analogue of the finite particle system, obtained by percolation with vanishing rates and suitable scaling of interactions. A law of large numbers result is proved for the convergence of such systems to the corresponding graphon mean field system.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"20 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Graphon mean field systems\",\"authors\":\"Erhan Bayraktar, Suman Chakraborty, Ruoyu Wu\",\"doi\":\"10.1214/22-aap1901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider heterogeneously interacting diffusive particle systems and their large population limit. The interaction is of mean field type with weights characterized by an underlying graphon. A law of large numbers result is established as the system size increases and the underlying graphons converge. The limit is given by a graphon mean field system consisting of independent but heterogeneous nonlinear diffusions whose probability distributions are fully coupled. Well-posedness, continuity and stability of such systems are provided. We also consider a not-so-dense analogue of the finite particle system, obtained by percolation with vanishing rates and suitable scaling of interactions. A law of large numbers result is proved for the convergence of such systems to the corresponding graphon mean field system.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1901\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1901","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
We consider heterogeneously interacting diffusive particle systems and their large population limit. The interaction is of mean field type with weights characterized by an underlying graphon. A law of large numbers result is established as the system size increases and the underlying graphons converge. The limit is given by a graphon mean field system consisting of independent but heterogeneous nonlinear diffusions whose probability distributions are fully coupled. Well-posedness, continuity and stability of such systems are provided. We also consider a not-so-dense analogue of the finite particle system, obtained by percolation with vanishing rates and suitable scaling of interactions. A law of large numbers result is proved for the convergence of such systems to the corresponding graphon mean field system.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.