石墨平均场系统

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Erhan Bayraktar, Suman Chakraborty, Ruoyu Wu
{"title":"石墨平均场系统","authors":"Erhan Bayraktar, Suman Chakraborty, Ruoyu Wu","doi":"10.1214/22-aap1901","DOIUrl":null,"url":null,"abstract":"We consider heterogeneously interacting diffusive particle systems and their large population limit. The interaction is of mean field type with weights characterized by an underlying graphon. A law of large numbers result is established as the system size increases and the underlying graphons converge. The limit is given by a graphon mean field system consisting of independent but heterogeneous nonlinear diffusions whose probability distributions are fully coupled. Well-posedness, continuity and stability of such systems are provided. We also consider a not-so-dense analogue of the finite particle system, obtained by percolation with vanishing rates and suitable scaling of interactions. A law of large numbers result is proved for the convergence of such systems to the corresponding graphon mean field system.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"20 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Graphon mean field systems\",\"authors\":\"Erhan Bayraktar, Suman Chakraborty, Ruoyu Wu\",\"doi\":\"10.1214/22-aap1901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider heterogeneously interacting diffusive particle systems and their large population limit. The interaction is of mean field type with weights characterized by an underlying graphon. A law of large numbers result is established as the system size increases and the underlying graphons converge. The limit is given by a graphon mean field system consisting of independent but heterogeneous nonlinear diffusions whose probability distributions are fully coupled. Well-posedness, continuity and stability of such systems are provided. We also consider a not-so-dense analogue of the finite particle system, obtained by percolation with vanishing rates and suitable scaling of interactions. A law of large numbers result is proved for the convergence of such systems to the corresponding graphon mean field system.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1901\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1901","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 33

摘要

我们考虑了非均匀相互作用的扩散粒子系统和它们的大种群限制。相互作用是平均场型的,其权重由底层的石墨烯表征。随着系统规模的增大和底层图元的收敛,建立了一个大数定律。该极限是由概率分布完全耦合的独立非均质非线性扩散组成的石墨平均场系统给出的。给出了系统的适位性、连续性和稳定性。我们还考虑了有限粒子系统的一个不那么密集的模拟,通过具有消失率和适当的相互作用尺度的渗透得到。证明了这类系统收敛于相应的图平均场系统的一个大数定律结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphon mean field systems
We consider heterogeneously interacting diffusive particle systems and their large population limit. The interaction is of mean field type with weights characterized by an underlying graphon. A law of large numbers result is established as the system size increases and the underlying graphons converge. The limit is given by a graphon mean field system consisting of independent but heterogeneous nonlinear diffusions whose probability distributions are fully coupled. Well-posedness, continuity and stability of such systems are provided. We also consider a not-so-dense analogue of the finite particle system, obtained by percolation with vanishing rates and suitable scaling of interactions. A law of large numbers result is proved for the convergence of such systems to the corresponding graphon mean field system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信