多参数伯努利工厂

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Renato Paes Leme, Jon Schneider
{"title":"多参数伯努利工厂","authors":"Renato Paes Leme, Jon Schneider","doi":"10.1214/22-aap1913","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing with many coins of unknown bias. We are given access to samples of n coins with unknown biases p1,…,pn and are asked to sample from a coin with bias f(p1,…,pn) for a given function f:[0,1]n→[0,1]. We give a complete characterization of the functions f for which this is possible. As a consequence, we show how to extend various combinatorial sampling procedures (most notably, the classic Sampford sampling for k-subsets) to the boundary of the hypercube.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"50 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiparameter Bernoulli factories\",\"authors\":\"Renato Paes Leme, Jon Schneider\",\"doi\":\"10.1214/22-aap1913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of computing with many coins of unknown bias. We are given access to samples of n coins with unknown biases p1,…,pn and are asked to sample from a coin with bias f(p1,…,pn) for a given function f:[0,1]n→[0,1]. We give a complete characterization of the functions f for which this is possible. As a consequence, we show how to extend various combinatorial sampling procedures (most notably, the classic Sampford sampling for k-subsets) to the boundary of the hypercube.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1913\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1913","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑带有许多未知偏差的硬币的计算问题。我们可以访问n个偏差未知的硬币的样本p1,…,pn,并要求对给定函数f:[0,1]n→[0,1]从偏差为f(p1,…,pn)的硬币进行抽样。我们给出了函数f的一个完整的表征,使得这是可能的。因此,我们展示了如何将各种组合抽样过程(最值得注意的是k-子集的经典Sampford抽样)扩展到超立方体的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiparameter Bernoulli factories
We consider the problem of computing with many coins of unknown bias. We are given access to samples of n coins with unknown biases p1,…,pn and are asked to sample from a coin with bias f(p1,…,pn) for a given function f:[0,1]n→[0,1]. We give a complete characterization of the functions f for which this is possible. As a consequence, we show how to extend various combinatorial sampling procedures (most notably, the classic Sampford sampling for k-subsets) to the boundary of the hypercube.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信