{"title":"几何和拓扑泛函及相关点过程的大偏差原理","authors":"Christian Hirsch, Takashi Owada","doi":"10.1214/22-aap1914","DOIUrl":null,"url":null,"abstract":"We prove a large deviation principle for the point process associated to k-element connected components in Rd with respect to the connectivity radii rn→∞. The random points are generated from a homogeneous Poisson point process or the corresponding binomial point process, so that (rn)n≥1 satisfies nkrnd(k−1)→∞ and nrnd→0 as n→∞ (i.e., sparse regime). The rate function for the obtained large deviation principle can be represented as relative entropy. As an application, we deduce large deviation principles for various functionals and point processes appearing in stochastic geometry and topology. As concrete examples of topological invariants, we consider persistent Betti numbers of geometric complexes and the number of Morse critical points of the min-type distance function.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"55 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Large deviation principle for geometric and topological functionals and associated point processes\",\"authors\":\"Christian Hirsch, Takashi Owada\",\"doi\":\"10.1214/22-aap1914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a large deviation principle for the point process associated to k-element connected components in Rd with respect to the connectivity radii rn→∞. The random points are generated from a homogeneous Poisson point process or the corresponding binomial point process, so that (rn)n≥1 satisfies nkrnd(k−1)→∞ and nrnd→0 as n→∞ (i.e., sparse regime). The rate function for the obtained large deviation principle can be represented as relative entropy. As an application, we deduce large deviation principles for various functionals and point processes appearing in stochastic geometry and topology. As concrete examples of topological invariants, we consider persistent Betti numbers of geometric complexes and the number of Morse critical points of the min-type distance function.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1914\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1914","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Large deviation principle for geometric and topological functionals and associated point processes
We prove a large deviation principle for the point process associated to k-element connected components in Rd with respect to the connectivity radii rn→∞. The random points are generated from a homogeneous Poisson point process or the corresponding binomial point process, so that (rn)n≥1 satisfies nkrnd(k−1)→∞ and nrnd→0 as n→∞ (i.e., sparse regime). The rate function for the obtained large deviation principle can be represented as relative entropy. As an application, we deduce large deviation principles for various functionals and point processes appearing in stochastic geometry and topology. As concrete examples of topological invariants, we consider persistent Betti numbers of geometric complexes and the number of Morse critical points of the min-type distance function.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.