$n$-谐和性,最小性,一致性和上同源性

IF 0.7 Q2 MATHEMATICS
Bang-Yen Chen, Shihshu Walter Wei
{"title":"$n$-谐和性,最小性,一致性和上同源性","authors":"Bang-Yen Chen, Shihshu Walter Wei","doi":"10.5556/j.tkjm.55.2024.5118","DOIUrl":null,"url":null,"abstract":"
 
 
 By studying cohomology classes that are related with n-harmonic morphisms and F-harmonic maps, we augment and extend several results on F-harmonic maps, harmonic maps in [1, 3, 14], p-harmonic morphisms in [17], and also revisit our previous results in [9, 10, 21] on Riemannian submersions and n-harmonic morphisms which are submersions. The results, for example Theorem 3.2 obtaine by utilizing the n-conservation law (2.6), are sharp.
 
 
","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"29 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"$n$-harmonicity, minimality, conformality and cohomology\",\"authors\":\"Bang-Yen Chen, Shihshu Walter Wei\",\"doi\":\"10.5556/j.tkjm.55.2024.5118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"
 
 
 By studying cohomology classes that are related with n-harmonic morphisms and F-harmonic maps, we augment and extend several results on F-harmonic maps, harmonic maps in [1, 3, 14], p-harmonic morphisms in [17], and also revisit our previous results in [9, 10, 21] on Riemannian submersions and n-harmonic morphisms which are submersions. The results, for example Theorem 3.2 obtaine by utilizing the n-conservation law (2.6), are sharp.
 
 
\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/j.tkjm.55.2024.5118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.55.2024.5118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

& # x0D;& # x0D;& # x0D;通过研究与n-调和态射和f -调和映射相关的上同调类,我们扩充和推广了若干关于f -调和映射、[1,3,14]中的调和映射、[17]中的p-调和态射的结果,并重新审视了我们之前在[9,10,21]中关于黎曼淹没和n-调和态射的结果。结果,例如利用n守恒定律(2.6)得到的定理3.2,是尖锐的。 & # x0D;& # x0D;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$n$-harmonicity, minimality, conformality and cohomology
By studying cohomology classes that are related with n-harmonic morphisms and F-harmonic maps, we augment and extend several results on F-harmonic maps, harmonic maps in [1, 3, 14], p-harmonic morphisms in [17], and also revisit our previous results in [9, 10, 21] on Riemannian submersions and n-harmonic morphisms which are submersions. The results, for example Theorem 3.2 obtaine by utilizing the n-conservation law (2.6), are sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信