一级动力学体系的绝对浓度鲁棒性

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Eduardo R. Mendoza, Dylan Antonio SJ. Talabis, Editha C. Jose, Lauro L. Fontanil
{"title":"一级动力学体系的绝对浓度鲁棒性","authors":"Eduardo R. Mendoza, Dylan Antonio SJ. Talabis, Editha C. Jose, Lauro L. Fontanil","doi":"10.46793/match.91-2.453m","DOIUrl":null,"url":null,"abstract":"A kinetic system has an absolute concentration robustness (ACR) for a molecular species if its concentration remains the same in every positive steady state of the system. Just recently, a condition that sufficiently guarantees the existence of an ACR in a rank-one mass-action kinetic system was found. In this paper, it will be shown that this ACR criterion does not extend in general to power-law kinetic systems. Moreover, we also discussed in this paper a necessary condition for ACR in multistationary rank-one kinetic system which can be used in ACR analysis. Finally, a concept of equilibria variation for kinetic systems which are based on the number of the system's ACR species will be introduced here.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"2 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Absolute Concentration Robustness in Rank-One Kinetic Systems\",\"authors\":\"Eduardo R. Mendoza, Dylan Antonio SJ. Talabis, Editha C. Jose, Lauro L. Fontanil\",\"doi\":\"10.46793/match.91-2.453m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A kinetic system has an absolute concentration robustness (ACR) for a molecular species if its concentration remains the same in every positive steady state of the system. Just recently, a condition that sufficiently guarantees the existence of an ACR in a rank-one mass-action kinetic system was found. In this paper, it will be shown that this ACR criterion does not extend in general to power-law kinetic systems. Moreover, we also discussed in this paper a necessary condition for ACR in multistationary rank-one kinetic system which can be used in ACR analysis. Finally, a concept of equilibria variation for kinetic systems which are based on the number of the system's ACR species will be introduced here.\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/match.91-2.453m\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/match.91-2.453m","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

如果某一分子种类的浓度在系统的每一个正稳定状态下都保持不变,则该动力学系统具有绝对浓度鲁棒性(ACR)。就在最近,发现了一个足以保证一级质量作用动力学系统中ACR存在的条件。本文将证明ACR准则一般不适用于幂律动力学系统。此外,本文还讨论了多平稳一级动力学系统中ACR存在的一个必要条件,该条件可用于ACR分析。最后,本文将引入基于系统ACR物种数量的动力学系统平衡变化的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolute Concentration Robustness in Rank-One Kinetic Systems
A kinetic system has an absolute concentration robustness (ACR) for a molecular species if its concentration remains the same in every positive steady state of the system. Just recently, a condition that sufficiently guarantees the existence of an ACR in a rank-one mass-action kinetic system was found. In this paper, it will be shown that this ACR criterion does not extend in general to power-law kinetic systems. Moreover, we also discussed in this paper a necessary condition for ACR in multistationary rank-one kinetic system which can be used in ACR analysis. Finally, a concept of equilibria variation for kinetic systems which are based on the number of the system's ACR species will be introduced here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信