等能树的构造

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Liang Wen Tang, Juan Liu, Shuangwei Qin
{"title":"等能树的构造","authors":"Liang Wen Tang, Juan Liu, Shuangwei Qin","doi":"10.46793/match.91-2.485t","DOIUrl":null,"url":null,"abstract":"The energy E(G) of a graph G is the sum of the absolute values of all eigenvalues of G. Two graphs of the same order are said to be equienergetic if their energies are equal. As pointed out by Gutman, it is not known how to systematically construct any pair of equienergetic, non-cospectral trees until now. Inspired by the research of integral trees, we proposed a construction of infinite pairs of equienergetic trees of diameter 4.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Equienergetic Trees\",\"authors\":\"Liang Wen Tang, Juan Liu, Shuangwei Qin\",\"doi\":\"10.46793/match.91-2.485t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy E(G) of a graph G is the sum of the absolute values of all eigenvalues of G. Two graphs of the same order are said to be equienergetic if their energies are equal. As pointed out by Gutman, it is not known how to systematically construct any pair of equienergetic, non-cospectral trees until now. Inspired by the research of integral trees, we proposed a construction of infinite pairs of equienergetic trees of diameter 4.\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/match.91-2.485t\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/match.91-2.485t","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一个图G的能量E(G)是G的所有特征值的绝对值的和,两个相同阶的图如果它们的能量相等,就被称为等能图。正如Gutman所指出的,到目前为止,人们还不知道如何系统地构造任何一对等能非共谱树。受积分树研究的启发,我们提出了无限对直径为4的等能树的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Equienergetic Trees
The energy E(G) of a graph G is the sum of the absolute values of all eigenvalues of G. Two graphs of the same order are said to be equienergetic if their energies are equal. As pointed out by Gutman, it is not known how to systematically construct any pair of equienergetic, non-cospectral trees until now. Inspired by the research of integral trees, we proposed a construction of infinite pairs of equienergetic trees of diameter 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信