Hilbert C*模高阶导数的表征

Pub Date : 2023-10-28 DOI:10.1515/gmj-2023-2085
S. Kh. Ekrami
{"title":"Hilbert C*模高阶导数的表征","authors":"S. Kh. Ekrami","doi":"10.1515/gmj-2023-2085","DOIUrl":null,"url":null,"abstract":"Abstract Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:math> {\\mathcal{M}} be a Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module. In this paper, we show that there is a one-to-one correspondence between all Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module higher derivations <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi mathvariant=\"script\">ℳ</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msubsup> </m:math> {\\{\\varphi_{n}:\\mathcal{M}\\rightarrow\\mathcal{M}\\}_{n=0}^{\\infty}} with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>=</m:mo> <m:mi>I</m:mi> </m:mrow> </m:math> {\\varphi_{0}=I} satisfying <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:munder> <m:mo largeop=\"true\" movablelimits=\"false\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>+</m:mo> <m:mi>j</m:mi> <m:mo>+</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>i</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>j</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mi>k</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo mathvariant=\"italic\" separator=\"true\"> </m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"script\">ℳ</m:mi> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\varphi_{n}(\\langle x,y\\rangle z)=\\sum_{i+j+k=n}\\langle\\varphi_{i}(x),\\varphi_% {j}(y)\\rangle\\varphi_{k}(z)\\quad(x,y,z\\in\\mathcal{M},\\,n\\in\\mathbb{N}\\cup\\{0\\}) and all Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module derivations <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi mathvariant=\"script\">ℳ</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msubsup> </m:math> {\\{\\psi_{n}:\\mathcal{M}\\rightarrow\\mathcal{M}\\}_{n=1}^{\\infty}} satisfying <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo mathvariant=\"italic\" separator=\"true\"> </m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"script\">ℳ</m:mi> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> \\psi_{n}(\\langle x,y\\rangle z)=\\langle\\psi_{n}(x),y\\rangle z+\\langle x,\\psi_{n% }(y)\\rangle z+\\langle x,y\\rangle\\psi_{n}(z)\\quad(x,y,z\\in\\mathcal{M},\\,n\\in% \\mathbb{N}), and we show that for every Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module higher derivation <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msubsup> </m:math> {\\{\\varphi_{n}\\}_{n=0}^{\\infty}} on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:math> {\\mathcal{M}} , there exists a unique sequence of Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module derivations <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msubsup> </m:math> {\\{\\psi_{n}\\}_{n=1}^{\\infty}} on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:math> {\\mathcal{M}} such that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:munderover> <m:mo largeop=\"true\" movablelimits=\"false\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:munderover> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mrow> <m:munder> <m:mo largeop=\"true\" movablelimits=\"false\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mrow> <m:mstyle displaystyle=\"false\"> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> </m:mstyle> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mpadded width=\"+3.3pt\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:msub> <m:mi>r</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mn>1</m:mn> </m:msub> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mn>2</m:mn> </m:msub> </m:msub> <m:mo>⁢</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mi>k</m:mi> </m:msub> </m:msub> </m:mrow> </m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> \\psi_{n}=\\sum_{k=1}^{n}\\biggl{(}\\sum_{\\sum_{j=1}^{k}r_{j}=n}(-1)^{k-1}~{}r_{1}% \\varphi_{r_{1}}\\varphi_{r_{2}}\\dots\\varphi_{r_{k}}\\biggr{)} for all positive integers n , where the inner summation is taken over all positive integers <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> {r_{j}} with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> {\\sum_{j=1}^{k}r_{j}=n} .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Hilbert C<sup>*</sup>-module higher derivations\",\"authors\":\"S. Kh. Ekrami\",\"doi\":\"10.1515/gmj-2023-2085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:math> {\\\\mathcal{M}} be a Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module. In this paper, we show that there is a one-to-one correspondence between all Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module higher derivations <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msubsup> </m:math> {\\\\{\\\\varphi_{n}:\\\\mathcal{M}\\\\rightarrow\\\\mathcal{M}\\\\}_{n=0}^{\\\\infty}} with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>=</m:mo> <m:mi>I</m:mi> </m:mrow> </m:math> {\\\\varphi_{0}=I} satisfying <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:munder> <m:mo largeop=\\\"true\\\" movablelimits=\\\"false\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>+</m:mo> <m:mi>j</m:mi> <m:mo>+</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>i</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>j</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mi>k</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo mathvariant=\\\"italic\\\" separator=\\\"true\\\"> </m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> <m:mo rspace=\\\"4.2pt\\\">,</m:mo> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\\\varphi_{n}(\\\\langle x,y\\\\rangle z)=\\\\sum_{i+j+k=n}\\\\langle\\\\varphi_{i}(x),\\\\varphi_% {j}(y)\\\\rangle\\\\varphi_{k}(z)\\\\quad(x,y,z\\\\in\\\\mathcal{M},\\\\,n\\\\in\\\\mathbb{N}\\\\cup\\\\{0\\\\}) and all Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module derivations <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msubsup> </m:math> {\\\\{\\\\psi_{n}:\\\\mathcal{M}\\\\rightarrow\\\\mathcal{M}\\\\}_{n=1}^{\\\\infty}} satisfying <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo mathvariant=\\\"italic\\\" separator=\\\"true\\\"> </m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> <m:mo rspace=\\\"4.2pt\\\">,</m:mo> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> \\\\psi_{n}(\\\\langle x,y\\\\rangle z)=\\\\langle\\\\psi_{n}(x),y\\\\rangle z+\\\\langle x,\\\\psi_{n% }(y)\\\\rangle z+\\\\langle x,y\\\\rangle\\\\psi_{n}(z)\\\\quad(x,y,z\\\\in\\\\mathcal{M},\\\\,n\\\\in% \\\\mathbb{N}), and we show that for every Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module higher derivation <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msubsup> </m:math> {\\\\{\\\\varphi_{n}\\\\}_{n=0}^{\\\\infty}} on <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:math> {\\\\mathcal{M}} , there exists a unique sequence of Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module derivations <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msubsup> </m:math> {\\\\{\\\\psi_{n}\\\\}_{n=1}^{\\\\infty}} on <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:math> {\\\\mathcal{M}} such that <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:munderover> <m:mo largeop=\\\"true\\\" movablelimits=\\\"false\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:munderover> <m:mrow> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">(</m:mo> <m:mrow> <m:munder> <m:mo largeop=\\\"true\\\" movablelimits=\\\"false\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mrow> <m:mstyle displaystyle=\\\"false\\\"> <m:msubsup> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> </m:mstyle> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mpadded width=\\\"+3.3pt\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:msub> <m:mi>r</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mn>1</m:mn> </m:msub> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mn>2</m:mn> </m:msub> </m:msub> <m:mo>⁢</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mi>k</m:mi> </m:msub> </m:msub> </m:mrow> </m:mrow> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> \\\\psi_{n}=\\\\sum_{k=1}^{n}\\\\biggl{(}\\\\sum_{\\\\sum_{j=1}^{k}r_{j}=n}(-1)^{k-1}~{}r_{1}% \\\\varphi_{r_{1}}\\\\varphi_{r_{2}}\\\\dots\\\\varphi_{r_{k}}\\\\biggr{)} for all positive integers n , where the inner summation is taken over all positive integers <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> {r_{j}} with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msubsup> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> {\\\\sum_{j=1}^{k}r_{j}=n} .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 让ℳ {\mathcal{M}} 是一个希尔伯特 C * {\mathrm{C}^{*}} -模块。-模块。在本文中,我们证明了所有希尔伯特 C * {\mathrm{C}^{*} -模块之间存在一一对应关系。}-模块高阶导数 { φ n : ℳ → ℳ } n = 0 ∞ {\{varphi_{n}:\φ 0 = I {\varphi_{0}=I} 满足 φ n ( 〈 x , y 〉 z ) = ∑ i + j + k = n 〈 φ i ( x ) , φ j ( y ) 〉 φ k ( z ) ( x , y 、z ∈ ℳ , n ∈ ℕ ∪ { 0 } ) \varphi_{n}(\langle x,y\rangle z)=\sum_{i+j+k=n}\langle\varphi_{i}(x)、\varphi_% {j}(y)\rangle\varphi_{k}(z)\quad(x,y,z\in\mathcal{M},\,n\in\mathbb{N}\cup\{0\}) and all Hilbert C * {\mathrm{C}^{*}}.-模块派生 { ψ n : ℳ → ℳ } n = 1 ∞ {\{\psi_{n}:\满足 ψ n ( 〈 x , y 〉 z ) = 〈 ψ n ( x ) 、y 〉 z + 〈 x , ψ n ( y ) 〉 z + 〈 x , y 〉 ψ n ( z ) ( x , y , z ∈ ℳ , n ∈ ℕ ) 、 \psi_{n}(angle x,y\rangle z)=\langle\psi_{n}(x),y\rangle z+\langle x,\psi_{n% }(y)\rangle z+\langle x、y\rangle\psi_{n}(z)\quad(x,y,z\in\mathcal{M},\,n\in% \mathbb{N}),并且我们证明了对于每一个希尔伯特 C * {\mathrm{C}^{*}-上的每一个希尔伯特 C * {mathrm{C}^{*}} 模块的高阶导数 { φ n } n = 0 ∞ {\{varphi_{n}\}_{n=0}^{infty}} ,都存在唯一的序列。,存在一个唯一的希尔伯特 C * {\mathrm{C}^{*}} 序列。-模块派生 { ψ n } n = 1 ∞ {\{psi_{n}}_{n=1}^{infty}} 在 ℳ {\{mathcal{M}} 上,使得 ψ n = ∑ k = 1 n ( ∑ ∑ j = 1 k r j = n ( - 1 ) k - 1 r 1 φ r 1 φ r 2 ... φ r k ) \psi_{n}=sum_{k=1}^{n}\biggl{(}\sum_{\sum_{j=1}^{k}r_{j}=n}(-1)^{k-1}~{}r_{1}% \varphi_{r_{1}}\varphi_{r_{2}}\dots\varphi_{r_{k}}\biggr{)} 适用于所有正整数 n 、其中内求和取所有正整数 r j {r_{j}},∑ j = 1 k r j = n {\sum_{j=1}^{k}r_{j}=n} 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Characterization of Hilbert C*-module higher derivations
Abstract Let {\mathcal{M}} be a Hilbert C * {\mathrm{C}^{*}} -module. In this paper, we show that there is a one-to-one correspondence between all Hilbert C * {\mathrm{C}^{*}} -module higher derivations { φ n : } n = 0 {\{\varphi_{n}:\mathcal{M}\rightarrow\mathcal{M}\}_{n=0}^{\infty}} with φ 0 = I {\varphi_{0}=I} satisfying φ n ( x , y z ) = i + j + k = n φ i ( x ) , φ j ( y ) φ k ( z ) ( x , y , z , n { 0 } ) \varphi_{n}(\langle x,y\rangle z)=\sum_{i+j+k=n}\langle\varphi_{i}(x),\varphi_% {j}(y)\rangle\varphi_{k}(z)\quad(x,y,z\in\mathcal{M},\,n\in\mathbb{N}\cup\{0\}) and all Hilbert C * {\mathrm{C}^{*}} -module derivations { ψ n : } n = 1 {\{\psi_{n}:\mathcal{M}\rightarrow\mathcal{M}\}_{n=1}^{\infty}} satisfying ψ n ( x , y z ) = ψ n ( x ) , y z + x , ψ n ( y ) z + x , y ψ n ( z ) ( x , y , z , n ) , \psi_{n}(\langle x,y\rangle z)=\langle\psi_{n}(x),y\rangle z+\langle x,\psi_{n% }(y)\rangle z+\langle x,y\rangle\psi_{n}(z)\quad(x,y,z\in\mathcal{M},\,n\in% \mathbb{N}), and we show that for every Hilbert C * {\mathrm{C}^{*}} -module higher derivation { φ n } n = 0 {\{\varphi_{n}\}_{n=0}^{\infty}} on {\mathcal{M}} , there exists a unique sequence of Hilbert C * {\mathrm{C}^{*}} -module derivations { ψ n } n = 1 {\{\psi_{n}\}_{n=1}^{\infty}} on {\mathcal{M}} such that ψ n = k = 1 n ( j = 1 k r j = n ( - 1 ) k - 1 r 1 φ r 1 φ r 2 φ r k ) \psi_{n}=\sum_{k=1}^{n}\biggl{(}\sum_{\sum_{j=1}^{k}r_{j}=n}(-1)^{k-1}~{}r_{1}% \varphi_{r_{1}}\varphi_{r_{2}}\dots\varphi_{r_{k}}\biggr{)} for all positive integers n , where the inner summation is taken over all positive integers r j {r_{j}} with j = 1 k r j = n {\sum_{j=1}^{k}r_{j}=n} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信