Hilbert C*模高阶导数的表征

IF 0.8 4区 数学 Q2 MATHEMATICS
S. Kh. Ekrami
{"title":"Hilbert C*模高阶导数的表征","authors":"S. Kh. Ekrami","doi":"10.1515/gmj-2023-2085","DOIUrl":null,"url":null,"abstract":"Abstract Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:math> {\\mathcal{M}} be a Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module. In this paper, we show that there is a one-to-one correspondence between all Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module higher derivations <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi mathvariant=\"script\">ℳ</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msubsup> </m:math> {\\{\\varphi_{n}:\\mathcal{M}\\rightarrow\\mathcal{M}\\}_{n=0}^{\\infty}} with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>=</m:mo> <m:mi>I</m:mi> </m:mrow> </m:math> {\\varphi_{0}=I} satisfying <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:munder> <m:mo largeop=\"true\" movablelimits=\"false\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>+</m:mo> <m:mi>j</m:mi> <m:mo>+</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>i</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>j</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mi>k</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo mathvariant=\"italic\" separator=\"true\"> </m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"script\">ℳ</m:mi> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\varphi_{n}(\\langle x,y\\rangle z)=\\sum_{i+j+k=n}\\langle\\varphi_{i}(x),\\varphi_% {j}(y)\\rangle\\varphi_{k}(z)\\quad(x,y,z\\in\\mathcal{M},\\,n\\in\\mathbb{N}\\cup\\{0\\}) and all Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module derivations <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi mathvariant=\"script\">ℳ</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msubsup> </m:math> {\\{\\psi_{n}:\\mathcal{M}\\rightarrow\\mathcal{M}\\}_{n=1}^{\\infty}} satisfying <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo mathvariant=\"italic\" separator=\"true\"> </m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"script\">ℳ</m:mi> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> \\psi_{n}(\\langle x,y\\rangle z)=\\langle\\psi_{n}(x),y\\rangle z+\\langle x,\\psi_{n% }(y)\\rangle z+\\langle x,y\\rangle\\psi_{n}(z)\\quad(x,y,z\\in\\mathcal{M},\\,n\\in% \\mathbb{N}), and we show that for every Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module higher derivation <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msubsup> </m:math> {\\{\\varphi_{n}\\}_{n=0}^{\\infty}} on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:math> {\\mathcal{M}} , there exists a unique sequence of Hilbert <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\mathrm{C}^{*}} -module derivations <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msubsup> </m:math> {\\{\\psi_{n}\\}_{n=1}^{\\infty}} on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:math> {\\mathcal{M}} such that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:munderover> <m:mo largeop=\"true\" movablelimits=\"false\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:munderover> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mrow> <m:munder> <m:mo largeop=\"true\" movablelimits=\"false\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mrow> <m:mstyle displaystyle=\"false\"> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> </m:mstyle> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mpadded width=\"+3.3pt\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:msub> <m:mi>r</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mn>1</m:mn> </m:msub> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mn>2</m:mn> </m:msub> </m:msub> <m:mo>⁢</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mi>k</m:mi> </m:msub> </m:msub> </m:mrow> </m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> \\psi_{n}=\\sum_{k=1}^{n}\\biggl{(}\\sum_{\\sum_{j=1}^{k}r_{j}=n}(-1)^{k-1}~{}r_{1}% \\varphi_{r_{1}}\\varphi_{r_{2}}\\dots\\varphi_{r_{k}}\\biggr{)} for all positive integers n , where the inner summation is taken over all positive integers <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> {r_{j}} with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> {\\sum_{j=1}^{k}r_{j}=n} .","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Hilbert C<sup>*</sup>-module higher derivations\",\"authors\":\"S. Kh. Ekrami\",\"doi\":\"10.1515/gmj-2023-2085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:math> {\\\\mathcal{M}} be a Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module. In this paper, we show that there is a one-to-one correspondence between all Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module higher derivations <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msubsup> </m:math> {\\\\{\\\\varphi_{n}:\\\\mathcal{M}\\\\rightarrow\\\\mathcal{M}\\\\}_{n=0}^{\\\\infty}} with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>=</m:mo> <m:mi>I</m:mi> </m:mrow> </m:math> {\\\\varphi_{0}=I} satisfying <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:munder> <m:mo largeop=\\\"true\\\" movablelimits=\\\"false\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>+</m:mo> <m:mi>j</m:mi> <m:mo>+</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>i</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>j</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:msub> <m:mi>φ</m:mi> <m:mi>k</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo mathvariant=\\\"italic\\\" separator=\\\"true\\\"> </m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> <m:mo rspace=\\\"4.2pt\\\">,</m:mo> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\\\varphi_{n}(\\\\langle x,y\\\\rangle z)=\\\\sum_{i+j+k=n}\\\\langle\\\\varphi_{i}(x),\\\\varphi_% {j}(y)\\\\rangle\\\\varphi_{k}(z)\\\\quad(x,y,z\\\\in\\\\mathcal{M},\\\\,n\\\\in\\\\mathbb{N}\\\\cup\\\\{0\\\\}) and all Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module derivations <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msubsup> </m:math> {\\\\{\\\\psi_{n}:\\\\mathcal{M}\\\\rightarrow\\\\mathcal{M}\\\\}_{n=1}^{\\\\infty}} satisfying <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo mathvariant=\\\"italic\\\" separator=\\\"true\\\"> </m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> <m:mo rspace=\\\"4.2pt\\\">,</m:mo> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> \\\\psi_{n}(\\\\langle x,y\\\\rangle z)=\\\\langle\\\\psi_{n}(x),y\\\\rangle z+\\\\langle x,\\\\psi_{n% }(y)\\\\rangle z+\\\\langle x,y\\\\rangle\\\\psi_{n}(z)\\\\quad(x,y,z\\\\in\\\\mathcal{M},\\\\,n\\\\in% \\\\mathbb{N}), and we show that for every Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module higher derivation <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msub> <m:mi>φ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msubsup> </m:math> {\\\\{\\\\varphi_{n}\\\\}_{n=0}^{\\\\infty}} on <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:math> {\\\\mathcal{M}} , there exists a unique sequence of Hilbert <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> {\\\\mathrm{C}^{*}} -module derivations <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msubsup> </m:math> {\\\\{\\\\psi_{n}\\\\}_{n=1}^{\\\\infty}} on <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℳ</m:mi> </m:math> {\\\\mathcal{M}} such that <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>ψ</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:munderover> <m:mo largeop=\\\"true\\\" movablelimits=\\\"false\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:munderover> <m:mrow> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">(</m:mo> <m:mrow> <m:munder> <m:mo largeop=\\\"true\\\" movablelimits=\\\"false\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mrow> <m:mstyle displaystyle=\\\"false\\\"> <m:msubsup> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> </m:mstyle> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mpadded width=\\\"+3.3pt\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:msub> <m:mi>r</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mn>1</m:mn> </m:msub> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mn>2</m:mn> </m:msub> </m:msub> <m:mo>⁢</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>φ</m:mi> <m:msub> <m:mi>r</m:mi> <m:mi>k</m:mi> </m:msub> </m:msub> </m:mrow> </m:mrow> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> \\\\psi_{n}=\\\\sum_{k=1}^{n}\\\\biggl{(}\\\\sum_{\\\\sum_{j=1}^{k}r_{j}=n}(-1)^{k-1}~{}r_{1}% \\\\varphi_{r_{1}}\\\\varphi_{r_{2}}\\\\dots\\\\varphi_{r_{k}}\\\\biggr{)} for all positive integers n , where the inner summation is taken over all positive integers <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> {r_{j}} with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msubsup> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:msub> <m:mi>r</m:mi> <m:mi>j</m:mi> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> {\\\\sum_{j=1}^{k}r_{j}=n} .\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2085\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2085","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 让ℳ {\mathcal{M}} 是一个希尔伯特 C * {\mathrm{C}^{*}} -模块。-模块。在本文中,我们证明了所有希尔伯特 C * {\mathrm{C}^{*} -模块之间存在一一对应关系。}-模块高阶导数 { φ n : ℳ → ℳ } n = 0 ∞ {\{varphi_{n}:\φ 0 = I {\varphi_{0}=I} 满足 φ n ( 〈 x , y 〉 z ) = ∑ i + j + k = n 〈 φ i ( x ) , φ j ( y ) 〉 φ k ( z ) ( x , y 、z ∈ ℳ , n ∈ ℕ ∪ { 0 } ) \varphi_{n}(\langle x,y\rangle z)=\sum_{i+j+k=n}\langle\varphi_{i}(x)、\varphi_% {j}(y)\rangle\varphi_{k}(z)\quad(x,y,z\in\mathcal{M},\,n\in\mathbb{N}\cup\{0\}) and all Hilbert C * {\mathrm{C}^{*}}.-模块派生 { ψ n : ℳ → ℳ } n = 1 ∞ {\{\psi_{n}:\满足 ψ n ( 〈 x , y 〉 z ) = 〈 ψ n ( x ) 、y 〉 z + 〈 x , ψ n ( y ) 〉 z + 〈 x , y 〉 ψ n ( z ) ( x , y , z ∈ ℳ , n ∈ ℕ ) 、 \psi_{n}(angle x,y\rangle z)=\langle\psi_{n}(x),y\rangle z+\langle x,\psi_{n% }(y)\rangle z+\langle x、y\rangle\psi_{n}(z)\quad(x,y,z\in\mathcal{M},\,n\in% \mathbb{N}),并且我们证明了对于每一个希尔伯特 C * {\mathrm{C}^{*}-上的每一个希尔伯特 C * {mathrm{C}^{*}} 模块的高阶导数 { φ n } n = 0 ∞ {\{varphi_{n}\}_{n=0}^{infty}} ,都存在唯一的序列。,存在一个唯一的希尔伯特 C * {\mathrm{C}^{*}} 序列。-模块派生 { ψ n } n = 1 ∞ {\{psi_{n}}_{n=1}^{infty}} 在 ℳ {\{mathcal{M}} 上,使得 ψ n = ∑ k = 1 n ( ∑ ∑ j = 1 k r j = n ( - 1 ) k - 1 r 1 φ r 1 φ r 2 ... φ r k ) \psi_{n}=sum_{k=1}^{n}\biggl{(}\sum_{\sum_{j=1}^{k}r_{j}=n}(-1)^{k-1}~{}r_{1}% \varphi_{r_{1}}\varphi_{r_{2}}\dots\varphi_{r_{k}}\biggr{)} 适用于所有正整数 n 、其中内求和取所有正整数 r j {r_{j}},∑ j = 1 k r j = n {\sum_{j=1}^{k}r_{j}=n} 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Hilbert C*-module higher derivations
Abstract Let {\mathcal{M}} be a Hilbert C * {\mathrm{C}^{*}} -module. In this paper, we show that there is a one-to-one correspondence between all Hilbert C * {\mathrm{C}^{*}} -module higher derivations { φ n : } n = 0 {\{\varphi_{n}:\mathcal{M}\rightarrow\mathcal{M}\}_{n=0}^{\infty}} with φ 0 = I {\varphi_{0}=I} satisfying φ n ( x , y z ) = i + j + k = n φ i ( x ) , φ j ( y ) φ k ( z ) ( x , y , z , n { 0 } ) \varphi_{n}(\langle x,y\rangle z)=\sum_{i+j+k=n}\langle\varphi_{i}(x),\varphi_% {j}(y)\rangle\varphi_{k}(z)\quad(x,y,z\in\mathcal{M},\,n\in\mathbb{N}\cup\{0\}) and all Hilbert C * {\mathrm{C}^{*}} -module derivations { ψ n : } n = 1 {\{\psi_{n}:\mathcal{M}\rightarrow\mathcal{M}\}_{n=1}^{\infty}} satisfying ψ n ( x , y z ) = ψ n ( x ) , y z + x , ψ n ( y ) z + x , y ψ n ( z ) ( x , y , z , n ) , \psi_{n}(\langle x,y\rangle z)=\langle\psi_{n}(x),y\rangle z+\langle x,\psi_{n% }(y)\rangle z+\langle x,y\rangle\psi_{n}(z)\quad(x,y,z\in\mathcal{M},\,n\in% \mathbb{N}), and we show that for every Hilbert C * {\mathrm{C}^{*}} -module higher derivation { φ n } n = 0 {\{\varphi_{n}\}_{n=0}^{\infty}} on {\mathcal{M}} , there exists a unique sequence of Hilbert C * {\mathrm{C}^{*}} -module derivations { ψ n } n = 1 {\{\psi_{n}\}_{n=1}^{\infty}} on {\mathcal{M}} such that ψ n = k = 1 n ( j = 1 k r j = n ( - 1 ) k - 1 r 1 φ r 1 φ r 2 φ r k ) \psi_{n}=\sum_{k=1}^{n}\biggl{(}\sum_{\sum_{j=1}^{k}r_{j}=n}(-1)^{k-1}~{}r_{1}% \varphi_{r_{1}}\varphi_{r_{2}}\dots\varphi_{r_{k}}\biggr{)} for all positive integers n , where the inner summation is taken over all positive integers r j {r_{j}} with j = 1 k r j = n {\sum_{j=1}^{k}r_{j}=n} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信