{"title":"非线性不适定算子方程Banach空间中的简化regin - it方法","authors":"Pallavi Mahale, Farheen M. Shaikh","doi":"10.1515/jiip-2023-0045","DOIUrl":null,"url":null,"abstract":"Abstract In 2021, Z. Fu, Y. Chen and B. Han introduced an inexact Newton regularization (REGINN-IT) using an idea involving the non-stationary iterated Tikhonov regularization scheme for solving nonlinear ill-posed operator equations. In this paper, we suggest a simplified version of the REGINN-IT scheme by using the Bregman distance, duality mapping and a suitable parameter choice strategy to produce an approximate solution. The method is comprised of inner and outer iteration steps. The outer iterates are stopped by a Morozov-type stopping rule, while the inner iterate is executed by making use of the non-stationary iterated Tikhonov scheme. We have studied convergence of the proposed method under some standard assumptions and utilizing tools from convex analysis. The novelty of the method is that it requires computation of the Fréchet derivative only at an initial guess of an exact solution and hence can be identified as more efficient compared to the method given by Z. Fu, Y. Chen and B. Han. Further, in the last section of the paper, we discuss test examples to inspect the proficiency of the method.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"22 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified REGINN-IT method in Banach spaces for nonlinear ill-posed operator equations\",\"authors\":\"Pallavi Mahale, Farheen M. Shaikh\",\"doi\":\"10.1515/jiip-2023-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In 2021, Z. Fu, Y. Chen and B. Han introduced an inexact Newton regularization (REGINN-IT) using an idea involving the non-stationary iterated Tikhonov regularization scheme for solving nonlinear ill-posed operator equations. In this paper, we suggest a simplified version of the REGINN-IT scheme by using the Bregman distance, duality mapping and a suitable parameter choice strategy to produce an approximate solution. The method is comprised of inner and outer iteration steps. The outer iterates are stopped by a Morozov-type stopping rule, while the inner iterate is executed by making use of the non-stationary iterated Tikhonov scheme. We have studied convergence of the proposed method under some standard assumptions and utilizing tools from convex analysis. The novelty of the method is that it requires computation of the Fréchet derivative only at an initial guess of an exact solution and hence can be identified as more efficient compared to the method given by Z. Fu, Y. Chen and B. Han. Further, in the last section of the paper, we discuss test examples to inspect the proficiency of the method.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2023-0045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在2021年,Fu Z., Y. Chen和B. Han利用非平稳迭代Tikhonov正则化方案的思想引入了求解非线性不适定算子方程的非精确牛顿正则化(regin - it)。在本文中,我们提出了regin - it方案的简化版本,使用Bregman距离、对偶映射和合适的参数选择策略来产生近似解。该方法由内部和外部迭代步骤组成。外部迭代通过morozov类型停止规则停止,而内部迭代通过使用非平稳迭代Tikhonov方案执行。我们利用凸分析的工具,在一些标准假设下研究了该方法的收敛性。该方法的新颖之处在于,它只需要在对精确解的初步猜测时计算fr切特导数,因此可以确定为比zz . Fu, Y. Chen和B. Han给出的方法更有效。此外,在论文的最后一部分,我们讨论了测试实例来检验该方法的熟练程度。
Simplified REGINN-IT method in Banach spaces for nonlinear ill-posed operator equations
Abstract In 2021, Z. Fu, Y. Chen and B. Han introduced an inexact Newton regularization (REGINN-IT) using an idea involving the non-stationary iterated Tikhonov regularization scheme for solving nonlinear ill-posed operator equations. In this paper, we suggest a simplified version of the REGINN-IT scheme by using the Bregman distance, duality mapping and a suitable parameter choice strategy to produce an approximate solution. The method is comprised of inner and outer iteration steps. The outer iterates are stopped by a Morozov-type stopping rule, while the inner iterate is executed by making use of the non-stationary iterated Tikhonov scheme. We have studied convergence of the proposed method under some standard assumptions and utilizing tools from convex analysis. The novelty of the method is that it requires computation of the Fréchet derivative only at an initial guess of an exact solution and hence can be identified as more efficient compared to the method given by Z. Fu, Y. Chen and B. Han. Further, in the last section of the paper, we discuss test examples to inspect the proficiency of the method.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography