一种基于改进Harris Hawks优化算法的机器人路径规划方法

IF 1.3 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Changyong Li, Qing Si, Jianan Zhao, Pengbo Qin
{"title":"一种基于改进Harris Hawks优化算法的机器人路径规划方法","authors":"Changyong Li, Qing Si, Jianan Zhao, Pengbo Qin","doi":"10.1177/00202940231204424","DOIUrl":null,"url":null,"abstract":"The traditional Harris Hawks optimization algorithm is prone to the local shortest path, slow search speed and poor path accuracy in indoor mobile robot path planning. For the above problems, a multi-strategy improvement of the Harris Hawks optimization algorithm (MIHHO) is proposed. In this study, a Chebyshev chaotic mapping strategy is used to increase the diversity of the Harris Hawk population, improve the global search performance of the Harris Hawk algorithm, and prevent being trapped in the locally optimal path. A fusion exploration mechanism is proposed to fuse the discovery mechanism of the sparrow algorithm with the exploration mechanism of the HHO. Then the influence factor E is improved to improve the algorithm’s search accuracy and search efficiency, and finally, in the design of a dynamic Lévy flight strategy, which accelerates the convergence speed of the algorithm and improves the robot planning speed. Simulation results show that the proposed MIHHO method exhibits better search performance in path planning, improved planning efficiency, and superior quality of planned paths.","PeriodicalId":49849,"journal":{"name":"Measurement & Control","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robot path planning method using improved Harris Hawks optimization algorithm\",\"authors\":\"Changyong Li, Qing Si, Jianan Zhao, Pengbo Qin\",\"doi\":\"10.1177/00202940231204424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional Harris Hawks optimization algorithm is prone to the local shortest path, slow search speed and poor path accuracy in indoor mobile robot path planning. For the above problems, a multi-strategy improvement of the Harris Hawks optimization algorithm (MIHHO) is proposed. In this study, a Chebyshev chaotic mapping strategy is used to increase the diversity of the Harris Hawk population, improve the global search performance of the Harris Hawk algorithm, and prevent being trapped in the locally optimal path. A fusion exploration mechanism is proposed to fuse the discovery mechanism of the sparrow algorithm with the exploration mechanism of the HHO. Then the influence factor E is improved to improve the algorithm’s search accuracy and search efficiency, and finally, in the design of a dynamic Lévy flight strategy, which accelerates the convergence speed of the algorithm and improves the robot planning speed. Simulation results show that the proposed MIHHO method exhibits better search performance in path planning, improved planning efficiency, and superior quality of planned paths.\",\"PeriodicalId\":49849,\"journal\":{\"name\":\"Measurement & Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231204424\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231204424","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

传统的Harris Hawks优化算法在室内移动机器人路径规划中容易出现局部最短路径、搜索速度慢、路径精度差的问题。针对上述问题,提出了Harris Hawks优化算法(MIHHO)的多策略改进。在本研究中,采用Chebyshev混沌映射策略来增加Harris Hawk种群的多样性,提高Harris Hawk算法的全局搜索性能,避免陷入局部最优路径。提出了一种融合探索机制,将麻雀算法的发现机制与HHO算法的探索机制融合在一起。然后对影响因子E进行改进,提高算法的搜索精度和搜索效率,最后设计了一种动态lsamvy飞行策略,加快了算法的收敛速度,提高了机器人的规划速度。仿真结果表明,该方法在路径规划中具有更好的搜索性能,提高了规划效率,规划出的路径质量更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robot path planning method using improved Harris Hawks optimization algorithm
The traditional Harris Hawks optimization algorithm is prone to the local shortest path, slow search speed and poor path accuracy in indoor mobile robot path planning. For the above problems, a multi-strategy improvement of the Harris Hawks optimization algorithm (MIHHO) is proposed. In this study, a Chebyshev chaotic mapping strategy is used to increase the diversity of the Harris Hawk population, improve the global search performance of the Harris Hawk algorithm, and prevent being trapped in the locally optimal path. A fusion exploration mechanism is proposed to fuse the discovery mechanism of the sparrow algorithm with the exploration mechanism of the HHO. Then the influence factor E is improved to improve the algorithm’s search accuracy and search efficiency, and finally, in the design of a dynamic Lévy flight strategy, which accelerates the convergence speed of the algorithm and improves the robot planning speed. Simulation results show that the proposed MIHHO method exhibits better search performance in path planning, improved planning efficiency, and superior quality of planned paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement & Control
Measurement & Control 工程技术-仪器仪表
自引率
10.00%
发文量
164
审稿时长
>12 weeks
期刊介绍: Measurement and Control publishes peer-reviewed practical and technical research and news pieces from both the science and engineering industry and academia. Whilst focusing more broadly on topics of relevance for practitioners in instrumentation and control, the journal also includes updates on both product and business announcements and information on technical advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信